Answer:A:The track pushes back on Clinton's shoe with the same force.
Explanation:According to Newton's third law of motion, for every action force there is an equal and opposite reaction force. In this case, the action force is Clinton's shoe pushing on the track. As this happens, there is an equal and opposite reaction force in which the track pushes back on Clinton's shoe with the same force.
Answer:
0.6 m
Explanation:
When a spring is compressed it stores potential energy. This energy is:
Ep = 1/2 * k * x^2
Being x the distance it compressed/stretched.
When the spring bounces the ice cube back it will transfer that energy to the cube, it will raise up the slope, reaching a high point where it will have a speed of zero and a potential energy equal to what the spring gave it.
The potential energy of the ice cube is:
Ep = m * g * h
This is vertical height and is related to the distance up the slope by:
sin(a) = h/d
h = sin(a) * d
Replacing:
Ep = m * g * sin(a) * d
Equating both potential energies:
1/2 * k * x^2 = m * g * sin(a) * d
d = (1/2 * k * x^2) / (m * g * sin(a))
d= (1/2 * 25 * 0.1^2) / (0.05 * 9.81 * sin(25)) = 0.6 m
Answer:
the power of the solar cell is 1.5 watts
Explanation:
Recall that power is defined as the product of the voltage (V) times the running current (I): Power = V * I.
The only thing we have to take care of before actually performing the operation, is to convert milliamps into Amps, so our answer comes directly in the appropriate units (Watts). 500 mAmps can be written as 0.5 Amps, then, the product becomes:
Power = V * I = 3 V * 0.5 Amps = 1.5 watts
Sin of a right triangle is opposite divided by hypotenuse
in this case, that is 5/8.6 = 0.581395349<span>
</span>
you can easily remember the trig functions with this acronym:
SOH-CAH-TOA
S: Sine
O: Opposite
H: Hypotenuse
C: Cosine
A: Adjacent
H: Hypotenuse
T: Tangent
O: Opposite
A: Adjacent
Answer:
Explanation:
A ball is thrown in forward direction by a person who is riding on the roof of the moving train.
-->If you neglected the air drag and relative to the ground, then the velocity of the ball is equal to the sum of the velocities of ball and the train.
-->Hence, the ball is moving faster.
-(b) Relative to the freight car, the ball moves at the same speed irrespective of train