1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nuetrik [128]
2 years ago
6

PLEASE HELP LOTTA POINTS

Physics
2 answers:
Dahasolnce [82]2 years ago
8 0

Answer:

He was right?

Explanation:

sergiy2304 [10]2 years ago
3 0

There's a nasty wrinkle here that's kind of sneaky, and makes the work harder than it should be.

Look at the first question.  There's a number there that's dropped in so quietly that you're almost sure to miss it, but it changes the whole landscape of both of these problems.   That's where it says

" ... 20 cm mark (30 cm from the fulcrum) ... " .

That tells us that the yellow bar resting on the pivot is actually a meter stick, but the pictures don't show the centimeter marks on the stick.  The left end of the stick is "0 cm", the right end of the stick is "100 cm", and the pivot is under the "50 cm" mark.  

When the question talks about hanging a weight, it tells the <em>centimeter mark on the stick</em> where the weight is tied.  To solve the problem, we have to first figure out <em>how far that is from the pivot</em>, then calculate how far from the pivot to put the weight on the other side, and finally <u><em>what centimeter mark that is</em></u> on the stick.      

How to solve the problems:

-- The "moment" of a weight is (the weight) x (its distance from the pivot) .

-- To balance the stick, (the sum of the moments on one side) = (the sum of the moments on the other side).

= = = = = = = = = =  

#1).  Only one moment on the left side.  

(160 gm) x (30 cm from pivot) = 4,800 gm-cm

To balance, we need 4,800 gm-cm of moment on the right side.

(500 gm) x (distance from pivot) = 4,800 gm-cm

Distance from pivot = (4,800 gm-cm) / (500 gm)  =  9.6 cm

The 500 gm has to hang 9.6 cm to the right of the pivot.  But that's not the answer to the problem.  They want to know what mark on the stick to hang it from.  The pivot is at the 50cm mark.  The 500gm has to hang 9.6 cm to the right of the pivot.  That's the <em>59.6 cm</em> mark on the stick.

= = = = =

#2).  There are 2 weights hanging from the left side. We have to find the moment of each weight, add them up, then create the same amount of moment on the right side.

one weight:  120gm, hanging from the 25cm mark.

That's 25cm from the pivot.  Moment = (120gm) (25cm) = 3,000 gm-cm

the other weight:  20gm, hanging from the 10cm mark;

That's 40cm from the pivot.  Moment = (20gm) (40cm) = 800 gm-cm

Add up the moments on the left side:

(3,000 gm-cm) + (800 gm-cm) = 3,800 gm-cm.

To balance, we need 3,800 gm-cm of moment on the right side.

(500 gm) x (its distance from the pivot) = 3,800 gm-cm

Distance from the pivot = (3,800 gm-cm) / (500 gm) = 7.6 cm

The pivot is at the 50cm mark on the stick.  You have to hang the 500gm from 7.6cm to the right of that.  The mark at that spot on the stick is                (50cm + 7.6cm) = <em>57.6 cm </em>.

You might be interested in
If you see a crosswalk signal flashing, you should look out for:
lorasvet [3.4K]

C.) Pedestrians yielding to cross traffic.

5 0
3 years ago
Read 2 more answers
How does sound travel through a medium?
Papessa [141]
Particles vibrate parallel to the direction the sound travels. It's a longitudinal wave.
4 0
3 years ago
Read 2 more answers
l o which of the following can move from one atom to another A. protons Msideus. B. neutrons C. electrons the nucleus
Tanzania [10]
Electrons can move from one atom to another. 

When a lot of them are doing it at the same time,
you have an electric current.

We asked around here at Brainly, and nobody knows
what an "Msideus" is, but we all know that there aren't
any of them in atoms.
5 0
3 years ago
Describe each class of lever and explain to characteristics of each
Nataly [62]

-- Class I lever

The fulcrum is between the effort and the load.

The Mechanical Advantage can be anything, more or less than 1 .

Example:  a see-saw

-- Class II lever

The load is between the fulcrum and the effort.

The Mechanical Advantage is always greater than 1 .

Example:  a nut-cracker, a garlic press

-- Class III lever

The effort is between the fulcrum and the load.

The Mechanical Advantage is always less than 1 .

I can't think of an example right now.

8 0
3 years ago
Read 2 more answers
How does friction help soccer players
Lena [83]
When soccer players run they are using friction to propell themselves
7 0
3 years ago
Read 2 more answers
Other questions:
  • PLEAASE HELP KE WITH THESE THREE YOULL GET POINTS
    6·1 answer
  • In which medium does sound travel the fastest?
    7·1 answer
  • HELP A car traveling at 4m/s accelerates at a rate of .80m/s2 for 1.8s. What is its final velocity?
    8·2 answers
  • How many of each component are shown in the diagram? Check all that apply.
    9·1 answer
  • In Newtons famous event that why, apple always falls to the Earth. Suppose the weight of the apple is 2.5 N. Then calculate the
    11·1 answer
  • Define work What is the unit for work? For Physics, thanks.
    5·1 answer
  • Calculate the tension (in N) in a vertical strand of spiderweb if a spider of mass 5.00 ✕ 10-5 kg hangs motionless on it.
    12·1 answer
  • What is the magnitude of velocity for a 3,100 kg car possessing 4,100 kg•m/s of momentum?​
    10·2 answers
  • Reclamation would be classified as a _____ human activity for the environment. Positive or negative?
    10·1 answer
  • Rooms are fitted with ventilators to let the air move around. The phenomenon involved is:
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!