Answer:
B. 0.98 m/s
Explanation:
This is because we use the simple formula of dividing the distance by the time. In which case would be 13.69m (distance) divided by 13.92s (time) and we will get 0.983477011 or 0.98m/s (your answer)
I hope this made sense and hoped it helped. Good luck with your test luv :)
Answer:
i) acceleration from B to D is 0, because the velocity is constant (stays the same)
ii) whatever units of distathat might be, we can calculate the number:
for 4 time-steps (2 to 6) the velocity is 6 per time step, that makes 24 distance units in these 4 time steps. it's the same the area underneath the graph.
there is also the vertical line from 0 to 2. we can calculate that distance like the area of a triangle with 2*6 / 2 = 6
the total distance from 0 to D is therefore 30
Given Information:
Resistance = R = 14 Ω
Inductance = L = 2.3 H
voltage = V = 100 V
time = t = 0.13 s
Required Information:
(a) energy is being stored in the magnetic field
(b) thermal energy is appearing in the resistance
(c) energy is being delivered by the battery?
Answer:
(a) energy is being stored in the magnetic field ≈ 219 watts
(b) thermal energy is appearing in the resistance ≈ 267 watts
(c) energy is being delivered by the battery ≈ 481 watts
Explanation:
The energy stored in the inductor is given by

The rate at which the energy is being stored in the inductor is given by

The current through the RL circuit is given by

Where τ is the the time constant and is given by


Therefore, eq. 1 becomes

At t = 0.13 seconds

(b) thermal energy is appearing in the resistance
The thermal energy is given by

(c) energy is being delivered by the battery?
The energy delivered by battery is

Answer:
material work function is 0.956 eV
Explanation:
given data
red wavelength 651 nm
green wavelength 521 nm
photo electrons = 1.50 × maximum kinetic energy
to find out
material work function
solution
we know by Einstein photo electric equation that is
for red light
h ( c / λr ) = Ф + kinetic energy
for green light
h ( c / λg ) = Ф + 1.50 × kinetic energy
now from both equation put kinetic energy from red to green
h ( c / λg ) = Ф + 1.50 × (h ( c / λr ) - Ф)
Ф =( hc / 0.50) × ( 1.50/ λr - 1/ λg)
put all value
Ф =( 6.63 ×
(3 ×
) / 0.50) × ( 1.50/ λr - 1/ λg)
Ф =( 6.63 ×
(3 ×
) / 0.50 ) × ( 1.50/ 651×
- 1/ 521 ×
)
Ф = 1.5305 ×
J × ( 1ev / 1.6 ×
J )
Ф = 0.956 eV
material work function is 0.956 eV
Answer:
I think it's 250
Explanation:
If the car is traveling 50 km/hr that means every hour, the car drives 50 km. So if you want to know how far it will go in 5 hours you do 50x5.