Answer:
A) 14. 25 × 10²³ Carbon atoms
B) 34.72 grams
Explanation:
1 molecule of Propane has 3 atoms of Carbon and 8 atoms of Hydrogen.
The sample has 3.84 × 10²⁴ H atoms.
If 8 atoms of Hydrogrn are present in 1 molecule of propane.
3.84 × 10²⁴ H atoms are present in

<u>= 4.75 × 10²³ molecules of Propane</u>.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
No. of Carbon atoms in 1 molecule of propane = 3
=> C atoms in 4.75× 10²³ molecules of Propane = 3 × 4.75 × 10²³
<u>= 14.25 × 10²³ </u>
<u>________________________________________</u>
<u>Gram</u><u> </u><u>Molecular</u><u> </u><u>Mass</u><u> </u><u>of</u><u> </u><u>Propane</u><u>(</u><u>C3H8</u><u>)</u>
= 3 × 12 + 8 × 1
= 36 + 8
= 44 g
1 mole of propane weighs 44g and has 6.02× 10²³ molecules of Propane.
=> 6.02 × 10²³ molecules of Propane weigh = 44 g
=> 4. 75 × 10²³ molecules of Propane weigh =



<u>= 34.72 g</u>
Answer:

Explanation:
In this case, we have to start with the <u>chemical reaction</u>:

So, if we start with <u>10 mol of cyclohexanol</u> (
) we will obtain 10 mol of cyclohexanol (
). So, we can calculate the grams of cyclohexanol if we<u> calculate the molar mass:</u>

With this value we can calculate the grams:

Now, we have as a product 500 mL of
. If we use the <u>density value</u> (0.811 g/mL). We can calculate the grams of product:

Finally, with these values we can calculate the <u>yield</u>:
%= (405.5/820)*100 = 49.45 %
See figure 1
I hope it helps!
Earth’s Atmosphere
The atmosphere of Earth is the layer of gases, commonly known as air, retained by Earth's gravity, surrounding the planet Earth and forming its planetary atmosphere.
Answer:
The answer is Elastic Potential Energy
Answer:
The advantages described below
Explanation:
Advantages of a balanced chemical equation versus word equation:
- easier to read: chemical equations typically only take one line and they include all the relevant information needed. They are short-hand notations for what we describe in words.
- balanced chemical equations show molar ratio in which reactants react and the molar ratio of the products. Those are coefficients in front of the species. This is typically not included in a word equation, for example, hydrochloric acid reacts with potassium hydroxide. The latter statement doesn't describe the molar ratio and stoichiometry.
- includes relevant information, such as catalysts, temperature and pressure above the arrow in the equation. We wouldn't have this in a word equation most of the time.
- shows the stoichiometry of each compound itself, e. g. if we state 'ammonia', we don't know what atoms it consists of as opposed to
. - includes states of matter: aqueous, liquid, gas, solid. This would often be included in a word equation, however.