Answer:
substrate-level phosphorylation
Explanation:
Substrate-level phosphorylation is the metabolic reaction which results in formation of energy currency molecules, ATP or GTP by direct transfer of a phosphoryl group to the ADP or GDP from the another phosphorylated compound.
<u>In citric acid cycle, Succinyl-CoA in the presence of succinyl-CoA synthase is converted to succinate. Condensation reaction (Substrate-level phosphorylation) of GDP and Pi takes place which results in the formation of GTP.</u>
Answer:
Because it only needs one more electron to get to a full valence shell (8), so it really wants it and is pulling other electrons in. It also has to do with needing one more electron to fill the 2p shell. It is a small element which means its electrons are pulled tightly to the nucleus.
Hope this helps!
Explanation:
The hydrogen deficiency index( HDI) of strigol is = 10
<h3>How to calculate HDI:</h3>
The hydrogen deficiency index is used to measure the number of degree of unsaturation of an organic compound.
Strigol is an example of an organic compound because it contains carbons and hydrogen.
To calculate the HDI using the molecular formula given (C19H20O6) the formula for HDI is used which is:

where C = number of carbon atoms = 19
n= number of nitrogen atoms = 0
h= number of hydrogen atoms = 20
X = number of halogen atoms = 0
Note that oxygen was not considered because it forms two bonds and has no impact.
There for HDI =

HDI=

HDI =

HDI = 10
Therefore, the hydrogen deficiency index of strigol is = 10
Learn more about unsaturated compounds here:
brainly.com/question/490531
Salts that are from strong bases and strong acids do not hydrolyze. Salts that are from strong bases and weak acids do hydrolyze, which gives it a pH greater than 7. Salts of weak bases and strong acids do hydrolyze, which gives it a pH less than 7.
Answer:
Planck made many contributions to theoretical physics, but his fame rests primarily on his role as originator of the quantum theory. This theory revolutionized our understanding of atomic and subatomic processes, just as Albert Einstein's theory of relativity revolutionized our understanding of space and time