O valence electron number is the answer
To answer this item, we solve first for the mass of the solution by multiplying the density by the volume. That is,
m = (density)(volume)
Substituting the known values,
m = (1.50 g/mL)(5L)(1000 mL/1L)
m = 7500 grams
To determine the mass of the salt in the solution, multiply the calculated mass of the solution by the decimal equivalent of the percent salt in the solution.
m of salt = (7500 g)(0.33)
m of salt = 2475 grams
<em>Answer: 2475 grams</em>
Answer:
23.9g of Fe₂O₃ are produced
Explanation:
<em>Are formed when 16.7g of Fe reacts completely...</em>
<em />
Based on the reaction:
4Fe + O₃ → 2Fe₂O₃
<em>4 moles of Iron react per 1 mole of O₃ producing 2 moles of Fe₂O₃.</em>
<em />
To solve this question we need to convert the mass of iron to moles. The ratio of reaction is 2:1 -That is, 2 moles of Fe produce 1 mole of Fe₂O₃-. Thus, we can find the moles of Fe₂O₃ produced and its mass:
<em>Moles Fe -Molar mass: 55.845g/mol-:</em>
16.7g Fe * (1mol / 55.845g) = 0.299 moles of Fe
<em>Moles Fe₂O₃:</em>
0.299 moles Fe * (2 mol Fe₂O₃ / 4 mol Fe) = 0.150 moles Fe₂O₃
<em>Mass Fe₂O₃ -Molar mass 159.69g/mol-:</em>
0.150 moles Fe₂O₃ * (159.69g / mol) =
<h3>23.9g of Fe₂O₃ are produced</h3>
<em />
The answer is electron configuration.