Ba2+ and Cu2+, and Sr2+ and Li+
A substance can dissolve in another when they have thee same type of intermolecular interaction.
<h3>What is solubility?</h3>
The term solubility of a solute refers to the extent to which a solute dissolve in a solvent. We must know that a substance can dissolve in another when they have thee same type of intermolecular interaction.
Thus;
a) Octane (C8H18) mixes well with CCl4 because they are both non polar substances.
b) Methanol (CH3OH) is mixed with water in all ratios because the both are polar substances.
c) NaBr dissolves very poorly in acetone (CH3 ― CO ― CH3) because acetone is only slightly polar.
Learn more about solubility:brainly.com/question/8591226
#SPJ1
pH is the measure of the hydrogen ion concentration while pOH is of hydroxide ion concentration in the solution. The pH is 0.939 and pOH is 13.061 pOH.
pH is the concentration of the hydrogen ion released or gained by the species in the solution that depicts the acidity and basicity of the solution.
pOH is the concentration of the hydroxide ion in the solution and is dependent on the pH as an increase in pH decreases the pOH and vice versa.
Both HCl and HBr are strong acids and gets ionized 100 % in the solution. If we let 1 L of solution for the acids then the concentration of the hydrogen ion will be 0.100 M.
Since both completely dissociate we would just add the molarities of each of the H+ ions together and then calculate the PH and POH from that :
HCL(0.040M)----> H+(0.040M) +CL-(0.040M)
HBr(0.075M)----> H+(0.075M) +Br-(0.075M)
so 0.040M (H+ from HCL) + 0.075M (H+ from HBr) = 0.115M H+ in total.
pH is calculated as:
pH = -log[H+]
Substituting values in the equation:
log(0.115M)= 0.939 pH
pOH is calculated as:
14 - pH = pOH
Substituting values in the equation above:
14 - 0.939= 13.061 pOH
Therefore, pH is 0.939 and pOH is 13.061.
Learn more about pH and pOH here:
brainly.com/question/2947041
#SPJ4
Answer:
Explanation:
Given that
d= 35 μm ,yield strength = 163 MPa
d= 17 μm ,yield strength = 192 MPa
As we know that relationship between diameter and yield strength


d = diameter
K =Constant

So now by putting the values
d= 35 μm ,yield strength = 163 MPa
------------1
d= 17 μm ,yield strength = 192 MPa
------------2
From equation 1 and 2

K=394.53
By putting the values of K in equation 1


Now when d= 12 μm

