This is a bit long right now.
(n l m s) these are the numbers.
n=2, second orbital level.
l is the type of orbit: l=1 elongated, l=0 spherical
m=0, magnetic number: 0
s=spin, both have spin positive
You need still to round it up. Srry!
The unit is the Kelvin, but most of the time 273 is subtracted from the Kelvin temperature and the new number is called "degrees Celsius".
Combustion is a chemical reaction between a fuel and an oxidant, oxygen, to give off combustion products and heat. Complete combustion results when all of the fuel is consumed to form carbon dioxide and water, as in the case of a hydrocarbon fuel. Incomplete combustion results when insufficient oxygen reacts with the fuel, forming soot and carbon monoxide.
The complete combustion of propane proceeds through the following reaction:

+

-->

+

Combustion is an exothermic reaction, which means that it gives off heat as the reaction proceeds. For the complete combustion of propane, the heat of combustion is (-)2220 kJ/mole, where the minus sign indicates that the reaction is exothermic.
The molar mass of propane is 44.1 grams/mole. Using this value, the number of moles propane to be burned can be determined from the mass of propane given. Afterwards, this number of moles is multiplied by the heat of combustion to give the total heat produced from the reaction of the given mass of propane.
14.50 kg propane x <u> 1000 g </u> x <u> 1 mole propane </u> x <u> 2220 kJ </u>
1 kg 44.1 g 1 mole
=
729,931.97 kJ
Answer:
K = 2.96x10⁻¹⁰
Explanation:
Based on the initial reaction:
N2O4 ⇄ 2NO2; K = 1.5x10³
Using Hess's law, we can multiply this reaction changing K:
3 times this reaction:
3N2O4 ⇄ 6NO2; K = (1.5x10³)³ =3.375x10⁹
The inverse reaction has a K of:
6NO2 ⇄ 3N2O4 K = 1/3.375x10⁹;
<h3>K = 2.96x10⁻¹⁰</h3>
Answer:
?
Explanation:
What are the statements? You've given the passage but not the statements