Nitially the flame produces radiation<span> which heats the tin can. The tin can then</span>transfers heat<span> to the water </span>through<span> conduction. The hot water then rises to the top, in the convection process. </span>
Answer: the effective design stiffness required to limit the bumper maximum deflection during impact to 4 cm is 3906250 N/m
Explanation:
Given that;
mass of vehicle m = 1000 kg
for a low speed test; V = 2.5 m/s
bumper maximum deflection = 4 cm = 0.04 m
First we determine the energy of the vehicle just prior to impact;
W_v = 1/2mv²
we substitute
W_v = 1/2 × 1000 × (2.5)²
W_v = 3125 J
now, the the effective design stiffness k will be:
at the impact point, energy of the vehicle converts to elastic potential energy of the bumper;
hence;
W_v = 1/2kx²
we substitute
3125 = 1/2 × k (0.04)²
3125 = 0.0008k
k = 3125 / 0.0008
k = 3906250 N/m
Therefore, the effective design stiffness required to limit the bumper maximum deflection during impact to 4 cm is 3906250 N/m
Answer:
88.2 N
Explanation:
Datos
Lcubo = 10 cm = 0.1 m
Vcubo = Vfluido desalojado= 0.1 m x 0.1 m x 0.1 m = 10-3 m
mcubo = 10 kg
dfluido = 1000 kg/m3
g = 9.8 m/s2
Sabemos que el peso aparente de un cuerpo que se sumerge en un fluido es:
Paparente=Preal−Pfluido
Teniendo en cuenta que:
Preal = mcubo⋅gPfluido=E= dfluido⋅Vfluido⋅g
Como el cuerpo se sumerge completamente en el fluido, el volumen de fluido desalojado es exactamente el volumen del cubo. Por lo tanto si sustituimos los datos que nos proporcionan en el enunciado en la primera ecuación:
Paparente=mcubo⋅g−dfluido⋅Vfluido⋅g ⇒Paparente=10 kg ⋅9.8 m/s2 − 1000 kg/m3 ⋅10−3 m ⋅9.8 m/s2 ⇒Paparente = 88.2 N
Answer : The final energy of the system if the initial energy was 2000 J is, 3500 J
Solution :
(1) The equation used is,

where,
= final internal energy
= initial internal energy
q = heat energy
w = work done
(2) The known variables are, q, w and 
initial internal energy =
= 2000 J
heat energy = q = 1000 J
work done = w = 500 J
(3) Now plug the numbers into the equation, we get

(4) By solving the terms, we get




(5) Therefore, the final energy of the system if the initial energy was 2000 J is, 3500 J