Answer :
(a) The energy of blue light (in eV) is 2.77 eV
(b) The wavelength of blue light is 
Explanation:
The relation between the energy and frequency is:

where,
h = Plank's constant = 
Given :
Frequency = 
Conversion used :

So,


Also,

So,


The energy of blue light (in eV) is 2.77 eV
The relation between frequency and wavelength is shown below as:

Where,
c = the speed of light = 
Frequency = 
So, Wavelength is:


Conversion used : 
The wavelength of blue light is 
The energy would increase
b) increase kinetic energy
The reaction between N₂ and F₂ gives Nitrogen trifluoride as the product. The balanced equation is;
N₂ + 3F₂ → 2NF₃
The stoichiometric ratio between N₂ and NF₃ is 1 : 2
Hence,
moles of N₂ / moles of F₂ = 1 / 2
moles of N₂ / 25 mol = 0.5
moles of N₂ = 0.5 x 25 mol = 12.5 mol
Hence N₂ moles needed = 12.5 mol
At STP (273 K and 1 atm) 1 mol of gas = 22.4 L
Hence needed N₂ volume = 22.4 L mol⁻¹ x 12.5 mol
= 280 L
<span>The answer is 4. The molecules of each material entice each other over dispersion (London) intermolecular forces. Whether a substance is a solid, liquid, or gas hinge on the stability between the kinetic energies of the molecules and their intermolecular magnetisms. In fluorine, the electrons are firmly apprehended to the nuclei. The electrons have slight accidental to stroll to one side of the molecule, so the London dispersion powers are comparatively weak. As we go from fluorine to iodine, the electrons are far from the nuclei so the electron exhausts can more effortlessly misrepresent. The London dispersion forces developed to be increasingly stronger.</span>
Answer:
1) Maximun ammount of nitrogen gas: 
2) Limiting reagent: 
3) Ammount of excess reagent: 
Explanation:
<u>The reaction </u>

Moles of nitrogen monoxide
Molecular weight: 


Moles of hydrogen
Molecular weight: 


Mol rate of H2 and NO is 1:1 => hydrogen gas is in excess
1) <u>Maximun ammount of nitrogen gas</u> => when all NO reacted


2) <u>Limiting reagent</u>:
3) <u>Ammount of excess reagent</u>:

