<u>Answer:</u> The experimental van't Hoff factor is 1.21
<u>Explanation:</u>
The expression for the depression in freezing point is given as:

where,
i = van't Hoff factor = ?
= depression in freezing point = 0.225°C
= Cryoscopic constant = 1.86°C/m
m = molality of the solution = 0.100 m
Putting values in above equation, we get:

Hence, the experimental van't Hoff factor is 1.21
5 g of potassium oxalate react to produce 0.03 moles of calcium oxalate.
Calcium oxalate (CaC₂O₄) is obtained by the reaction of 5 g of potassium oxalate (K₂C₂O₄).
We can calculate the moles of CaC₂O₄ obtained considering the following relationships.
- The molar mass of K₂C₂O₄ is 184.24 g/mol.
- The mole ratio of K₂C₂O₄ to CaC₂O₄ is 2:1.

5 g of potassium oxalate react to produce 0.03 moles of calcium oxalate.
Learn more: brainly.com/question/15288923
The aim is to use less space while demonstrating the distribution of electrons in shells
If you want to depict how an atom's electrons are scattered across its subshells, an orbital notation is more suited.
This is due to the fact that some atoms have unique electronic configurations that are not readily apparent from textual configurations.
<h3>How does electron configuration work?</h3>
The placement of electrons in orbitals surrounding an atomic nucleus is known as electronic configuration, also known as electronic structure or electron configuration.
<h3>What sort of electron arrangement would that look like?</h3>
- For instance: You can see that oxygen contains 8 electrons on the periodic table.
- These 8 electrons would fill in the following order: 1s, 2s, and finally 2p, according to the aforementioned fill order. O 1s22s22p4 would be oxygen's electron configuration.
learn more about electronic configuration here
brainly.com/question/26084288
#SPJ4
The complete question is shown in the image attached to this answer.
Answer:
C
Explanation:
Let us quickly remember that the EMF of a cell under non standard conditions in given by the Nernst equation.
This equation states that;
E = E°cell - 0.592/n log Q
Where
E = EMF under non standard conditions
E°cell= standard EMF of the cell
n = number of electrons transferred
Q = reaction quotient
If the reaction quotient is greater than 1 then cell potential is less than the standard cell potential.
The cell that generates the lowest cell potential is the cell depicted in option C because Q has the greatest positive value(Q<1).