The question is incomplete , complete question is:
Hydrogen, a potential future fuel, can be produced from carbon (from coal) and steam by the following reaction:

Note that the average bond energy for the breaking of a bond in CO2 is 799 kJ/mol. Use average bond energies to calculate ΔH of reaction for this reaction.
Answer:
The ΔH of the reaction is -626 kJ/mol.
Explanation:

We are given with:



ΔH = (Energies required to break bonds on reactant side) - (Energies released on formation of bonds on product side)



The ΔH of the reaction is -626 kJ/mol.
Answer:
0.15g
Explanation:
Given parameters:
Number of molecules of water = 1.2 x 10²¹ molecules
Unknown:
Mass of SnO₂ = ?
Solution:
To solve this problem, we have to work from the known to the unknown specie;
SnO₂ + 2H₂ → Sn + 2H₂O
Ensure that the equation given is balanced;
Now,
the known species is water;
6.02 x 10²³ molecules of water = 1 mole
1.2 x 10²¹ molecules of water =
= 0.2 x 10⁻²moles
Number of moles of water = 0.002moles
From the balanced chemical equation:
2 mole of water is produced from 1 mole of SnO₂
0.002 moles of water will be produced from
= 0.001moles
To find the mass;
Mass = number of moles x molar mass
Molar mass of SnO₂ = 118.7 + 2(16) = 150.7g/mol
Mass = 0.001 x 150.7 = 0.15g
The central atom is carbon with three hydrogen and one chlorine atom around it. There are no unshared electrons on the carbon so it is tetrahedral.
All are the same. It equals to the same thing.
Hello.
The answer is C.Amine
When an amine is combined (reacted) with a carboxyl group, an AMIDE + water is formed, and if you carry on heating under a vacuum, an imidazoline is formed.
Have a nice day