Answer:
<em>Gravity</em><em>.</em><em> </em><em>The</em><em> </em><em>weight-force</em><em> </em><em>or</em><em> </em><em>weight</em><em> </em><em>of</em><em> </em><em>an</em><em> </em><em>object</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>force</em><em> </em><em>because</em><em> </em><em>of</em><em> </em><em>Gravity</em><em>,</em><em> </em><em>which</em><em> </em><em>acts</em><em> </em><em>on</em><em> </em><em>the</em><em> </em><em>object</em><em> </em><em>attracting</em><em> </em><em>it</em><em> </em><em>towards</em><em> </em><em>the</em><em> </em><em>centre</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>earth</em><em>.</em>
<em>Hope</em><em> </em><em>this</em><em> </em><em>helps</em><em>,</em><em> </em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>x</em>
Answer:
78 percent
Explanation:
I guess that's the right answer
Answer:
F = 6.27 x 10 ¹⁹ N
Explanation:
Given
m₁ = 92 kg, m₂ = 46 kg, % = 0.04% N = 6.022 x 10²³ Z = 18, e = 1.6 x 10 ⁻¹⁹ C, M = 0.018 kg/mol
q₁ = % * [m * N * A * e / M ]
q₁ = 0.0004 * [ ( 92 kg * 6.022 x 10²³ * 18 * 1.6 x 10 ⁻¹⁹ ) / (0.018 kg/mol ) ]
q₁ = 3.54 x 10⁶ C
q₂ = 0.0004 * [ ( 46 kg * 6.022 x 10²³ * 18 * 1.6 x 10 ⁻¹⁹ ) / (0.018 kg/mol ) ]
q₂ = 1.773 x 10⁶ C
Now to determine the electrostatic force con use the equation
F = K * q₁ * q₂ / d²
K = 8.99 x 10 ⁹
F = 8.99 x 10 ⁹ * 3.54 x 10⁶ C * 1.773 x 10⁶ C / (30m)²
F = 6.27 x 10 ¹⁹ N
Answer:
magnitude of the frictional torque is 0.11 Nm
Explanation:
Moment of inertia I = 0.33 kg⋅m2
Initial angular velocity w° = 0.69 rev/s = 2 x 3.142 x 0.69 = 4.34 rad/s
Final angular velocity w = 0 (since it stops)
Time t = 13 secs
Using w = w° + §t
Where § is angular acceleration
O = 4.34 + 13§
§ = -4.34/13 = -0.33 rad/s2
The negative sign implies it's a negative acceleration.
Frictional torque that brought it to rest must be equal to the original torque.
Torqu = I x §
T = 0.33 x 0.33 = 0.11 Nm