1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vodomira [7]
2 years ago
13

Choose ALL that apply

Physics
1 answer:
Keith_Richards [23]2 years ago
6 0
The answers a a,b, and d
You might be interested in
On a cool morning, Uyen’s breath can form a cloud when she breathes out. Which changes of state are most responsible for Uyen se
zhuklara [117]
It's cold outside, the water vaper in your breath condenses into tiny droplets of liquid water and ice that you can see.
3 0
3 years ago
Read 2 more answers
A car is strapped to a rocket (combined mass = 661 kg), and its kinetic energy is 66,120 J.
aliina [53]

Answer:

9.43 m/s

Explanation:

First of all, we calculate the final kinetic energy of the car.

According to the work-energy theorem, the work done on the car is equal to its change in kinetic energy:

W=K_f - K_i

where

W = -36.733 J is the work done on the car (negative because the car is slowing down, so the work is done in the direction opposite to the motion of the car)

K_f is the final kinetic energy

K_i = 66,120 J is the initial kinetic energy

Solving,

K_f = K_i + W = 66,120 + (-36,733)=29,387 J

Now we can find the final speed of the car by using the formula for kinetic energy

K_f = \frac{1}{2}mv^2

where

m = 661 kg is the mass of the car

v is its final speed

Solving for v, we find

v=\sqrt{\frac{2K_f}{m}}=\sqrt{\frac{2(29,387)}{661}}=9.43 m/s

3 0
3 years ago
Three moles of a monatomic ideal gas are heated at a constant volume of 1.20 m3. The amount of heat added is 5.22x10^3 J.(a) Wha
k0ka [10]

Answer:

A) 140 k

b ) 5.22 *10^3 J

c) 2910 Pa

Explanation:

Volume of Monatomic ideal gas = 1.20 m^3

heat added ( Q ) = 5.22*10^3 J

number of moles  (n)  = 3

A ) calculate the change in temp of the gas

since the volume of gas is constant no work is said to be done

heat capacity of an Ideal monoatomic gas ( Q ) = n.(3/2).RΔT

make ΔT subject of the equation

ΔT = Q / n.(3/2).R

    = (5.22*10^3 ) / 3( 3/2 ) * (8.3144 J/mol.k )

    = 140 K

B) Calculate the change in its internal energy

ΔU = Q  this is because no work is done

therefore the change in internal energy = 5.22 * 10^3 J

C ) calculate the change in pressure

applying ideal gas equation

P = nRT/V

therefore ; Δ P = ( n*R*ΔT/V )

                        = ( 3 * 8.3144 * 140 ) / 1.20

                        = 2910 Pa

3 0
3 years ago
Ezekiel is standing inside a spaceship ( S′ frame) that moves to the right at a speed of v=0.5c , where c is the speed of light.
vova2212 [387]

Answer:

c. Both signals are simultaneous.

Explanation:

The speed of light is the same in all frame of reference.

Since an observer inside the ship receives both signals at the same time, then the signals from both flashlight are simultaneously.

3 0
3 years ago
Whenever two apollo astronauts were on the surface of the moon, a third astronaut orbited the moon. assume the orbit to be circu
almond37 [142]
Missing question:
"Determine (a) the astronaut’s orbital speed v and (b) the period of the orbit"

Solution

part a) The center of the orbit of the third astronaut is located at the center of the moon. This means that the radius of the orbit is the sum of the Moon's radius r0 and the altitude (h=430 km=4.3 \cdot 10^5 m) of the orbit:
r= r_0 + h=1.7 \cdot 10^6 m + 4.3 \cdot 10^5 m=2.13 \cdot 10^6 m
This is a circular motion, where the centripetal acceleration is equal to the gravitational acceleration g at this altitude. The problem says that at this altitude, g=1.08 m/s^2. So we can write
g=a_c= \frac{v^2}{r}
where a_c is the centripetal acceleration and v is the speed of the astronaut. Re-arranging it we can find v:
v= \sqrt{g r}= \sqrt{(1.08 m/s^2)(2.13 \cdot 10^6 m)}=1517 m/s = 1.52 km/s

part b) The orbit has a circumference of 2 \pi r, and the astronaut is covering it at a speed equal to v. Therefore, the period of the orbit is
T= \frac{2 \pi r}{v} = \frac{2\pi (2.13 \cdot 10^6 m)}{1517 m/s} =8818 s = 2.45 h
So, the period of the orbit is 2.45 hours.
6 0
3 years ago
Other questions:
  • The windowpanes are___________ a. opaque b. transparent c. absorbent .
    7·2 answers
  • What is 2.5 × 104 × 3 × 102?
    8·1 answer
  • Explain why radiation is dangerous to humans
    8·2 answers
  • How do very high density objects appear in an ultrasound?
    6·1 answer
  • A guitar string is fixed at both ends. If you tighten it to increase its tension, the frequencies of its normal modes will incre
    15·1 answer
  • A space vehicle deploys its re–entry parachute when it's traveling at a vertical velocity of –150 meters/second (negative becaus
    8·1 answer
  • What causes objects to move or stay still (support your details with claims and evidence)
    8·1 answer
  • The materials that are changed in a chemical reaction are called A. reactants B. coefficients C. products D. none of the above
    7·2 answers
  • Consider a loop of wire with a resistor. In the same plane, (with switch S closed) a long wire has a current I flowing from left
    8·1 answer
  • Q1) An action exerted on an object which may change the object's
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!