Answer:
CH₅N
Explanation:
In the combustion, all of the C in the compound was used to produce CO₂ in a 1:1 ratio. Thus, the moles of CO₂ (MW 44.01 g/mol) produced equals the moles of C in the compound:
(44.0 g)(mol/44.01g) = 0.99977 mol CO₂ = 0.99977... mol C
Similarly, all of the H in the compound was used to produce H₂O in a ratio of 2H:1H₂O. The moles of H₂O (MW 18.02 g/mol) produced was:
(45.0 g)(mol/18.02g) = 2.497...mol H₂O
Moles of H is found using the molar ratio of 2H:1H₂O:
(2.497...mol H₂O)(2H/1H₂O) = 4.994...mol H
The ratio of H to C in the compound is:
(4.994...mol H)/(0.99977... mol C) = 5 H:C
Some NO₂ was produced from the N in the compound. Assuming a 1:1 ratio of C:N, the simplest empirical formula is: CH₅N.
Answer:
The concentration of I at equilibrium = 3.3166×10⁻² M
Explanation:
For the equilibrium reaction,
I₂ (g) ⇄ 2I (g)
The expression for Kc for the reaction is:
![K_c=\frac {\left[I_{Equilibrium} \right]^2}{\left[I_2_{Equilibrium} \right]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%20%7B%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%5E2%7D%7B%5Cleft%5BI_2_%7BEquilibrium%7D%20%5Cright%5D%7D)
Given:
= 0.10 M
Kc = 0.011
Applying in the above formula to find the equilibrium concentration of I as:
![0.011=\frac {\left[I_{Equilibrium} \right]^2}{0.10}](https://tex.z-dn.net/?f=0.011%3D%5Cfrac%20%7B%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%5E2%7D%7B0.10%7D)
So,
![\left[I_{Equilibrium} \right]^2=0.011\times 0.10](https://tex.z-dn.net/?f=%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%5E2%3D0.011%5Ctimes%200.10)
![\left[I_{Equilibrium} \right]^2=0.0011](https://tex.z-dn.net/?f=%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%5E2%3D0.0011)
![\left[I_{Equilibrium} \right]=3.3166\times 10^{-2}\ M](https://tex.z-dn.net/?f=%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%3D3.3166%5Ctimes%2010%5E%7B-2%7D%5C%20M)
<u>Thus, The concentration of I at equilibrium = 3.3166×10⁻² M</u>
Yes the kingdom is more specific
Answer:
Robert
Explanation:
There is not more than one colour