Answer:
40.73 L.
Explanation:
- We can use the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm (P = 121.59 kPa/101.325 = 1.2 atm).
V is the volume of the gas in L (V = ??? L).
n is the no. of moles of the gas in mol (n = 2.0 mol).
R is the general gas constant (R = 0.082 L.atm/mol.K),
T is the temperature of the gas in K (T = 25°C + 273 = 298 K).
<em>∴ V = nRT/P</em> = (2.0 mol)(0.082 L.atm/mol.K)(298 K)/(1.2 atm) = <em>40.73 L.</em>
Answer:
period 3 and group 3
Explanation:
I'm saying group 3 because that is how I learnt it at school, but if you count it then it's in group 13.
The bowl has more volume, the bearing has more volume. The mass is bigger for the bearing because it is heavier than the bowl. It is made of metal and the weight of it is greater than the bowl.(the body shape).
Answer:
<h2>.I can help you.....</h2>
Explanation:
<h2>am good at </h2>
moles
bonding
balancing equations
and set ups
Answer:
Zn3P2O8
Explanation:
In this particular question, it is necessary to convert the respective masses to percentages. We convert to percentages by placing each mass over the total mass and multiplying by 100%. Since the total is 50mg, conversion to percentage can be done by multiplying the masses by 2 as 100/50 is 2
For Oxygen = 16.58 * 2 = 33.16%
For phosphorus = 8.02 * 2 = 16.04%
For zinc = 25.40 * 2 = 50.80%
We then proceed to divide these percentages by their respective atomic masses. The atomic mass of oxygen, phosphorus and zinc are 16, 31 and 65 respectively.
O = 33.16/16 = 2.0725
P = 16.04/31 = 0.5174
Zn = 50.80/65 = 0.7815
Now, we divide by the smallest value which is that of the phosphorus
O = 2.0725/0.5174 = 4
P = 0.5174/0.5174 = 1
Zn= 0.7815/0.5174 = 1.5
Now, we need to multiply through by 2. This yields: O = 8, P = 2 and Zn = 3
The empirical formula is thus: Zn3P2O8