The voltage<span> difference between the two plates can be expressed in terms of the </span>work<span> done on a positive test charge q when it moves from the positive to the negative plate.</span><span>
E=V/d
where V is the voltage and d is the distance between the plates.
So,
E=6.0V/1mm= 6000 V/m. The electric field between the plates is 6000 V/m.</span>
NO
The likelihood of reaching 40 miles per hour is very slim. Several factors are related to how quickly somebody can run, which is why only one person has ever run 28 miles per hour.Catch a sprinter smashing a speed record and they look like they could keep up with a car chase. 40 MPH: The fastest speed humans can run. The current fastest human in the world is Usain Bolt, who can run at nearly 28 miles per hour.Steve in Davis, Calif. So far, the fastest anyone has run is about 27½ miles per hour, a speed reached (briefly) by sprinter Usain Bolt just after the midpoint of his world-record 100-meter dash in 2009.
Find more about run :-brainly.com/question/17889385?referrer=searchResults
#SPJ4
Answer:

Explanation:
The inlet specific volume of air is given by:

The mass flow rates is expressed as:

The energy balance for the system can the be expresses in the rate form as:
![E_{in}-E_{out}=\bigtriangleup \dot E=0\\\\E_{in}=E_{out}\\\\\dot m(h_1+0.5V_1^2)=\dot W_{out}+\dot m(h_2+0.5V_2^2)+Q_{out}\\\\\dot W_{out}=\dot m(h_2-h_1+0.5(V_2^2-V_1^2))=-m({cp(T_2-t_1)+0.5(V_2^2-V_1^2)})\\\\\\\dot W_{out}=-(10.42lbm/s)[(0.25\frac{Btu}{lbm.\textdegree F})(300-900)\textdegree F+0.5((700ft/s)^2-(350ft/s)^2)(\frac{1\frac{Btu}{lbm}}{25037ft^2/s^2})]\\\\\\\\=1486.5\frac{Btu}{s}](https://tex.z-dn.net/?f=E_%7Bin%7D-E_%7Bout%7D%3D%5Cbigtriangleup%20%5Cdot%20E%3D0%5C%5C%5C%5CE_%7Bin%7D%3DE_%7Bout%7D%5C%5C%5C%5C%5Cdot%20m%28h_1%2B0.5V_1%5E2%29%3D%5Cdot%20W_%7Bout%7D%2B%5Cdot%20m%28h_2%2B0.5V_2%5E2%29%2BQ_%7Bout%7D%5C%5C%5C%5C%5Cdot%20W_%7Bout%7D%3D%5Cdot%20m%28h_2-h_1%2B0.5%28V_2%5E2-V_1%5E2%29%29%3D-m%28%7Bcp%28T_2-t_1%29%2B0.5%28V_2%5E2-V_1%5E2%29%7D%29%5C%5C%5C%5C%5C%5C%5Cdot%20W_%7Bout%7D%3D-%2810.42lbm%2Fs%29%5B%280.25%5Cfrac%7BBtu%7D%7Blbm.%5Ctextdegree%20F%7D%29%28300-900%29%5Ctextdegree%20F%2B0.5%28%28700ft%2Fs%29%5E2-%28350ft%2Fs%29%5E2%29%28%5Cfrac%7B1%5Cfrac%7BBtu%7D%7Blbm%7D%7D%7B25037ft%5E2%2Fs%5E2%7D%29%5D%5C%5C%5C%5C%5C%5C%5C%5C%3D1486.5%5Cfrac%7BBtu%7D%7Bs%7D)
Hence, the mass flow rate of the air is 1486.5Btu/s
Answer:
Fₓ = 0,
= 0 and
<em> = - 3.115 10⁻¹⁵ N</em>
Explanation:
The magnetic force given by the expression
F = q v xB
the bold are vectors, the easiest analytical way to determine this force in solving the determinant
F = 1.6 10⁻¹⁵ [ i( 0-0) + j (0-0) + k^( 5.8 0.60 - 0.81 67) ]
F =i^0 + j^0
- k^ 3.115 10⁻¹⁵ N
Fₓ = 0
= 0
<em> = - 3.115 10⁻¹⁵ N</em>
Explanation:
The electric field is defined as the change in the properties of space caused by the existence of a positively (+) or negatively (-) charged particle. The electric field can be represented by infinitely many lines from a particle, and those lines never intersect each other. Depending on the type of charge we can see different cases:
- Let's say we have a <u>positive charge alone (</u>image 1)<u>.</u> The field lines are drawn from the centre of the particle outwards to infinity (in other words, they disappear from the edge of the picture). Meaning the direction of the electric field points outwards the particle.
- For a <u>negative charge alone </u>(image 2)<u>,</u> the lines come from infinity to the centre, and point towards the particle (i.e. lines appear from the edge of the picture).
Let's see what happens if we have two charges together:
- <u>Two positive charges</u> (image 3): Since the charges are of the same type (positive), the particles repel each other. Then the field lines will avoid each other so they do not join. The charge is positive, so lines point outwards.
- <u>Two negative charges</u> (image 4): Again, the charges are both negative, so they repel. But they are negative, so the field points inwards.
- <u>Negative and positive charges</u> (image 5): They are different charges, so the force between them is attractive. This causes the field lines from both to join. They go out of the positive and come into the negative particle.
Image 6:
The lines are passing through infinite points of the space. If we choose a certain point and measure the electric field, we can see to which direction the electric field points. This is the direction of the electric field vector. It does not matter which point we choose; the electric field vector touches the field line only at this point, which means it is tangent to the field line.