Answer:
Explanation:
Capacitor of 0.75μF, charged to 70V and connect in series with 55Ω and 140 Ω to discharge.
Energy dissipates in 55Ω resistor is given by V²/R
Since the 55ohms and 140ohms l discharge the capacitor fully, the voltage will be zero volts and this voltage will be shared by the resistor in ratio.
So for 55ohms, using voltage divider rule
V=R1/(R1+R2) ×Vt
V=55/(55+140) ×70
V=19.74Volts is across the 55ohms resistor.
Then, energy loss will be
E=V²/R
E=19.74²/55
E=7.09J
7.09J of heat is dissipated by the 55ohms resistor
To solve this problem it is necessary to apply the law of Malus which describes the change in the Intensity of Light when it crosses a polarized surface.
Mathematically the expression is given as

Where,
= Initial Intensity
I = Final Intensity after pass through the polarizer
= Angle between the polarizer and the light
Since it is sought to reduce the intensity by half the relationship between the two intensities will be given as

Using the Malus Law we have,





Angle with respect to maximum is 
- Initial velocity (u) = 0 m/s [the car was at rest]
- Distance (s) = 80 m
- Time (t) = 10 s
- Let the magnitude of acceleration be a.
- By using the equation of motion,
we get,
<u>A</u><u>nswer:</u>
<u>The </u><u>magnitude</u><u> </u><u>of </u><u>its </u><u>acceleration</u><u> </u><u>is </u><u>1</u><u>.</u><u>6</u><u> </u><u>m/</u><u>s^</u><u>2</u><u>.</u>
Hope you could get an idea from here.
Doubt clarification - use comment section.
Answer:
A
Explanation: A is a example of Air resistance force, which is a contact force.