I believe it is the Great Plains in Nebraska.
Answer:
[NaOH} = 0.4 M
Explanation:
In a reaction of neutralization, we determine the equivalence point of the titration. In this case, we have a strong base and a strong acid.
(H₂SO₄, is considered strong, but the first deprotonation is weak)
2NaOH + H₂SO₄ → Na₂SO₄ + 2H₂O
As we have 2 protons in the acid, we need 2 OH⁻ from the base to form 2 molecules of water.
In the equivalence point we know mmoles of base = mmoles of acid
Let's finish the excersise with the formula
25 mL . M NaOH = 28.2 mL . 0.355M
M NaOH = (28.2 mL . 0.355M) / 25 mL → 0.400
_Mg + _HCL = _MgCl2 + H2
Separate the terms on each side:
_Mg + _HCl = _MgCl2 + H2
Mg- 1 Mg-1
H-1 H-2
Cl-1 Cl-2
Mg is balanced on both sides so move on to the next (put a 1 in the space).
1Mg
There are two H's and two Cl's on the results side, so to balance the equation put a 2 as a coefficient for HCl and it'll all balance out.
2HCl
Balamced equation will be:
1Mg + 2HCL = 1MgCl2 + H2
Answer;
C. unchanged rock and mineral fragments
Explanation;
A large number of landforms and features found in desert environments are formed as the result of weathering. Weathering is defined as the breakdown and deposition of rocks by weather acting in situ
The two main types of weathering which occur in deserts are Mechanical weathering, which is the disintegration of a rock by mechanical forces that do not change the rock's chemical composition and Chemical weathering, which is the decomposition of a rock by the alteration of its chemical composition.
By contrast much of the weathered debris in deserts has resulted from mechanical weathering. Chemical weathering, however, is not completely absent in deserts. Over long time spans,clays and thin soils do form.
Explanation:
By losing or gaining electrons from its outermost orbit