Answer:
A. True
Explanation:
When a stone is thrown straight-up, it has an initial velocity which decreases gradually as the stone move to maximum height due to constant acceleration due to gravity acting downward on the stone, at the maximum height the final velocity of the stone is zero. As the stone descends the velocity starts to increase and becomes maximum before it hits the ground.
Height of the motion is given by;

g is acceleration due to gravity which is constant
H is height traveled
u is the speed of throw, which determines the value of height traveled.
Therefore, when the stone is caught at the same height from which it was thrown in the absence of air resistance, the speed of the stone when thrown will be equal to the speed when caught.
Time it takes the projectile to hit the ground after being thrown up:
√h/1/2a
√8/(.5)(9.81)
√8/4.905
√1.630988787
= 1.277101714
= 1. 28
hope this helps :)
Answer:
Explanation:
Far point = 17 cm . That means he can not see beyond this distance .
He wants to see at an object at 65 cm away . That means object placed at 65 has image at 17 cm by concave lens . Using lens formula
1 / v - 1 / u = 1 / f
1 / - 17 - 1 / - 65 = 1 / f
= 1 / 65 - 1 / 17
= - .0434 = 1 / f
power = - 100 / f
= - 100 x .0434
= - 4.34 D .
Just took the test and the answer is <span>C. 1,314,718.
</span>
you take a length of ordinary wire, make it into a big loop, and lay it between the poles of a powerful, permanent horseshoe magnet. Now if you connect the two ends of the wire to a battery, the wire will jump up briefly.When an electric current starts to creep along a wire, it creates a magnetic field all around it. If you place the wire near a permanent magnet, this temporary magnetic field interacts with the permanent magnet's field.