1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ahrayia [7]
3 years ago
11

slader Question: A Model Rocket Is Launched Straight Upward With An Initial Speed Of 50m/s. Iit Accelerates With A Constant Upwa

rd Acceleration Of 2.0 M/s^2 Until Its Engine Stops At An Altitude Of 150m. Calculate The Maximum Heigght Reached By The Rocket And How Long The Rocket Is In The Air.
Physics
1 answer:
xenn [34]3 years ago
3 0

Answer:

Maximum height reached by the rocket is

y_{max} = 308 m

total time of the motion of rocket is given as

T = 16.44 s

Explanation:

Initial speed of the rocket is given as

v_i = 50 m/s

acceleration of the rocket is given as

a = 2 m/s^2

engine stops at height h = 150 m

so the final speed of the rocket at this height is given as

v_f^2 - v_i^2 = 2 a d

v_f^2 - 50^2 = 2(2)(150)

v_f = 55.68 m/s

so maximum height reached by the rocket is given as the height where its final speed becomes zero

so we will have

v_f^2 - v_i^2 = 2 a d

0 - 55.68^2 = 2(-9.81)(y - 150)

y_{max} = 308 m

Now the total time of the motion of rocket is given as

1) time to reach the height of 150 m

v_f - v_i = at

55.68 - 50 = 2 t

t_1 = 2.84 s

2) time to reach ground from this height

\Delta y = v_y t + \frac{1}{2}gt^2

-150 = 55.68 t - \frac{1}{2}(9.81) t^2

t_2 = 13.6 s

so total time of the motion of rocket is given as

T = 13.6 + 2.84 = 16.44 s

You might be interested in
Interacting with others while exercising is beneficial to social health because it allows a person to __________.
vlada-n [284]
Feel better and develop communication skills

It's not only the physical well-being that has developed as well as intellectual and emotional aspect of an individual. When having conversation to someone and you are doing something  it's also the same of having a multitask work. That all senses response quickly and something is developing in you, at same time you are establishing good rapport towards others.

Download doc
6 0
3 years ago
On a Vernier Caliper, how do you know which mark to use on the very top scale?
madreJ [45]

<u>Answer</u>

To know where it starts we look where the zero mark of the vernier scale starts. The make just before reaching where the zero mark is marks the value to use<em>. </em>


<u>Explanation</u>

A vernier caliper is an instrument that is used to measure the diameter of small circular objects such as diameter of a wires, thickness of an iron sheet.

The objects to be measured is place between the jaws of the calipers.

The vernier scale has two scales, the vernier scale and the main scale which is the very top scale.<em> To know where it starts we look where the zero mark of the vernier scale starts. The make just before reaching where the zero mark is marks the value to use. </em>

4 0
3 years ago
A 100 kg roller coaster comes over the first hill at 2 m/sec (vo). The height of the first hill (h) is 20 meters. See roller dia
aleksandr82 [10.1K]

For the 100 kg roller coaster that comes over the first hill of height 20 meters at 2 m/s, we have:

1) The total energy for the roller coaster at the <u>initial point</u> is 19820 J

2) The potential energy at <u>point A</u> is 19620 J

3) The kinetic energy at <u>point B</u> is 10010 J

4) The potential energy at <u>point C</u> is zero

5) The kinetic energy at <u>point C</u> is 19820 J

6) The velocity of the roller coaster at <u>point C</u> is 19.91 m/s

1) The total energy for the roller coaster at the <u>initial point</u> can be found as follows:

E_{t} = KE_{i} + PE_{i}

Where:

KE: is the kinetic energy = (1/2)mv₀²

m: is the mass of the roller coaster = 100 kg

v₀: is the initial velocity = 2 m/s

PE: is the potential energy = mgh

g: is the acceleration due to gravity = 9.81 m/s²

h: is the height = 20 m

The<em> total energy</em> is:

E_{t} = KE_{i} + PE_{i} = \frac{1}{2}mv_{0}^{2} + mgh = \frac{1}{2}*100 kg*(2 m/s)^{2} + 100 kg*9.81 m/s^{2}*20 m = 19820 J

Hence, the total energy for the roller coaster at the <u>initial point</u> is 19820 J.

   

2) The <em>potential energy</em> at point A is:

PE_{A} = mgh_{A} = 100 kg*9.81 m/s^{2}*20 m = 19620 J

Then, the potential energy at <u>point A</u> is 19620 J.

3) The <em>kinetic energy</em> at point B is the following:

KE_{A} + PE_{A} = KE_{B} + PE_{B}

KE_{B} = KE_{A} + PE_{A} - PE_{B}

Since

KE_{A} + PE_{A} = KE_{i} + PE_{i}

we have:

KE_{B} = KE_{i} + PE_{i} - PE_{B} =  19820 J - mgh_{B} = 19820 J - 100kg*9.81m/s^{2}*10 m = 10010 J

Hence, the kinetic energy at <u>point B</u> is 10010 J.

4) The <em>potential energy</em> at <u>point C</u> is zero because h = 0 meters.

PE_{C} = mgh = 100 kg*9.81 m/s^{2}*0 m = 0 J

5) The <em>kinetic energy</em> of the roller coaster at point C is:

KE_{i} + PE_{i} = KE_{C} + PE_{C}            

KE_{C} = KE_{i} + PE_{i} = 19820 J      

Therefore, the kinetic energy at <u>point C</u> is 19820 J.

6) The <em>velocity</em> of the roller coaster at point C is given by:

KE_{C} = \frac{1}{2}mv_{C}^{2}

v_{C} = \sqrt{\frac{2KE_{C}}{m}} = \sqrt{\frac{2*19820 J}{100 kg}} = 19.91 m/s

Hence, the velocity of the roller coaster at <u>point C</u> is 19.91 m/s.

Read more here:

brainly.com/question/21288807?referrer=searchResults

I hope it helps you!

3 0
3 years ago
When the spacecraft is at the halfway point, how does the strength of the gravitional force on the spaceprobe by Earth compre wi
mixer [17]

Solution :

When the spacecraft is at halfway point, the distance from the Earth as well as Mars are same. We have to account the masses of the planets. The gravitational force that is exerted by the Earth is greater because of its combined mass with the space probe.

The mass of Earth is greater than the mass of Mars. Therefore, the force of Earth is more than Mars.

5 0
3 years ago
According to the Heisenberg uncertainty principle, if the uncertainty in the speed of an electron is 3.5 × 103 m/s, the uncertai
GREYUIT [131]

Explanation:

It is given that,

Uncertainty in the speed of an electron, \Delta v=3.5\times 10^3\ m/s

According to Heisenberg uncertainty principle,

\Delta x.\Delta p=\dfrac{h}{4\pi}

\Delta x is the uncertainty in the position of an electron

Since, \Delta p=m\Delta v

\Delta x=\dfrac{h}{4\pi.m \Delta v}

\Delta x=\dfrac{6.6\times 10^{-34}}{4\pi\times 9.1\times 10^{-31}\times 3.5\times 10^3}

\Delta x=1.64\times 10^{-8}\ m

So, the uncertainty in its position is 1.64\times 10^{-8}\ m. Hence, this is the required solution.

6 0
3 years ago
Other questions:
  • Name 3 things in the solar system​
    10·2 answers
  • Which statement does not correctly describe a theory?
    5·2 answers
  • A 3.00-kg box is sliding along a frictionless horizontal surface with a speed of 1.8 m/s when it encounters a spring. (a) Determ
    9·1 answer
  • How much power is necessary to do 50 J of work in 5 seconds
    13·2 answers
  • What is the gauge pressure at the bottom of the cylinder? Suppose that the density of oil is 900 kg/m3.
    9·1 answer
  • Is length a <br> vector,<br> scalar<br> ,both,<br> neither
    15·1 answer
  • How do you measure the wavelength of a wave?
    8·2 answers
  • What is an electric current​
    14·2 answers
  • A 25-newton horizontal force northward and a 35-
    7·1 answer
  • Two gravitational forces act on a
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!