Answer:
Maximum height reached by the rocket is
![y_{max} = 308 m](https://tex.z-dn.net/?f=y_%7Bmax%7D%20%3D%20308%20m)
total time of the motion of rocket is given as
![T = 16.44 s](https://tex.z-dn.net/?f=T%20%3D%2016.44%20s)
Explanation:
Initial speed of the rocket is given as
![v_i = 50 m/s](https://tex.z-dn.net/?f=v_i%20%3D%2050%20m%2Fs)
acceleration of the rocket is given as
![a = 2 m/s^2](https://tex.z-dn.net/?f=a%20%3D%202%20m%2Fs%5E2)
engine stops at height h = 150 m
so the final speed of the rocket at this height is given as
![v_f^2 - v_i^2 = 2 a d](https://tex.z-dn.net/?f=v_f%5E2%20-%20v_i%5E2%20%3D%202%20a%20d)
![v_f^2 - 50^2 = 2(2)(150)](https://tex.z-dn.net/?f=v_f%5E2%20-%2050%5E2%20%3D%202%282%29%28150%29)
![v_f = 55.68 m/s](https://tex.z-dn.net/?f=v_f%20%3D%2055.68%20m%2Fs)
so maximum height reached by the rocket is given as the height where its final speed becomes zero
so we will have
![v_f^2 - v_i^2 = 2 a d](https://tex.z-dn.net/?f=v_f%5E2%20-%20v_i%5E2%20%3D%202%20a%20d)
![0 - 55.68^2 = 2(-9.81)(y - 150)](https://tex.z-dn.net/?f=0%20-%2055.68%5E2%20%3D%202%28-9.81%29%28y%20-%20150%29)
![y_{max} = 308 m](https://tex.z-dn.net/?f=y_%7Bmax%7D%20%3D%20308%20m)
Now the total time of the motion of rocket is given as
1) time to reach the height of 150 m
![v_f - v_i = at](https://tex.z-dn.net/?f=v_f%20-%20v_i%20%3D%20at)
![55.68 - 50 = 2 t](https://tex.z-dn.net/?f=55.68%20-%2050%20%3D%202%20t)
![t_1 = 2.84 s](https://tex.z-dn.net/?f=t_1%20%3D%202.84%20s)
2) time to reach ground from this height
![\Delta y = v_y t + \frac{1}{2}gt^2](https://tex.z-dn.net/?f=%5CDelta%20y%20%3D%20v_y%20t%20%2B%20%5Cfrac%7B1%7D%7B2%7Dgt%5E2)
![-150 = 55.68 t - \frac{1}{2}(9.81) t^2](https://tex.z-dn.net/?f=-150%20%3D%2055.68%20t%20-%20%5Cfrac%7B1%7D%7B2%7D%289.81%29%20t%5E2)
![t_2 = 13.6 s](https://tex.z-dn.net/?f=t_2%20%3D%2013.6%20s)
so total time of the motion of rocket is given as
![T = 13.6 + 2.84 = 16.44 s](https://tex.z-dn.net/?f=T%20%3D%2013.6%20%2B%202.84%20%3D%2016.44%20s)