Answer:
5.66 × 10⁻²³ m/s
Explanation:
If i assume i can jump as high as h = 2 m, my initial velocity is gotten from v² = u² + 2gh. Since my final velocity v = 0, u = √2gh = √(2 × 9.8 × 2) = √39.2 m/s = 6.26 m/s.
Since initial momentum = final momentum,
mv₁ + MV₁ = mv₂ + MV₂ where m, M, v₁, V₁, v₂ and V₂ are my mass, mass of earth, my initial velocity, earth's initial velocity, my final velocity and earth's final velocity respectively.
My mass m = 54 kg, M = 5.972 × 10²⁴ kg, v₁ = 6.26 m/s, V₁ = 0, v₂ = 0 and V₂ = ?
So mv₁ + M × 0 = m × 0 + MV₂
mv₁ = MV₂
V₂ = mv₁/M = 54kg × 6.26 m/s/5.972 × 10²⁴ kg = 338.093/5.972 × 10²⁴ = 56.61 × 10⁻²⁴ m/s = 5.661 × 10⁻²³ m/s ≅ 5.66 × 10⁻²³ m/s
The magnitude of the magnetic field inside the solenoid is
.
The given parameters;
- <em>length of the solenoid, L = 91 cm = 0.91 m</em>
- <em>radius of the solenoid, r = 1.5 cm = 0.015 m</em>
- <em>number of turns of the solenoid, N = 1300 </em>
- <em>current in the solenoid, I = 3.6 A</em>
The magnitude of the magnetic field inside the solenoid is calculated as;

where;
is the permeability of frees space = 4π x 10⁻⁷ T.m/A

Thus, the magnitude of the magnetic field inside the solenoid is
.
Learn more here:brainly.com/question/17137684
Answer:

Explanation:
When unpolarized light passes through the first polarizer, the intensity of the light is reduced by a factor 1/2, so
(1)
where I_0 is the intensity of the initial unpolarized light, while I_1 is the intensity of the polarized light coming out from the first filter. Light that comes out from the first polarizer is also polarized, in the same direction as the axis of the first polarizer.
When the (now polarized) light hits the second polarizer, whose axis of polarization is rotated by an angle
with respect to the first one, the intensity of the light coming out is
(2)
If we combine (1) and (2) together,
(3)
We want the final intensity to be 1/10 the initial intensity, so

So we can rewrite (3) as

From which we find



The calculated mutual inductance is 8.544 x 10⁻⁵ H.
Two coils have a mutual inductance of 1 henry when emf of 1 volt is induced in coil 1 and when the current flowing through coil 2 is changing at the rate of one ampere per second.
Length of the solenoid= 5.0 cm
Area of cross-section=1.0 cm²
no of spaced turns=300 turns
turns of insulated wire=180 turns
Mutual inductance (M) = μ₀μr N1N2 A/ L
=(4xπx 10⁻⁷) x (6.3 x 10⁻³) x 300 x 180 x 1/ 5
=79.12 x 10⁻¹⁰ x 54000 / 5
=8.544 x 10⁻⁵ H
hence, the mutual inductance is 8.544 x 10⁻⁵ H.
Learn more about Mutual inductance here-
brainly.com/question/14014588
#SPJ4