Answer:
Initial pressure = 6 atm. Work = 0.144 J
Explanation:
You need to know the equation P1*V1=P2*V2, where P1 is the initial pressure, V1 is the initial volume, and P2 and V2 are the final pressure and volume respectively. So you can rearrange the terms and find that (1.2*0.05)/(0.01) = initial pressure = 6 atm. The work done by the system can be obtained calculating the are under the curve, so it is 0.144J
Good afternoon!
We calculate the volume of the container in cm³. To do that, we must put the units in cm:
30 cm → 30 cm
50 mm → 5 cm
0.2 m → 20 cm
The volume is:
V = 30 . 5 . 20
V = 3000 cm³
Now, we calculate the mas with the formula:
m = dV
m = 2.5 · 3000
m = 7500 g
Dividing by 1000, we have the mass in kg:
m = 7.5 kg
Answer:
E = 10t^2e^-10t Joules
Explanation:
Given that the current through a 0.2-H inductor is i(t) = 10te–5t A.
The energy E stored in the inductor can be expressed as
E = 1/2Ll^2
Substitutes the inductor L and the current I into the formula
E = 1/2 × 0.2 × ( 10te^-5t )^2
E = 0.1 × 100t^2e^-10t
E = 10t^2e^-10t Joules
Therefore, the energy stored in the inductor is 10t^2e^-10t Joules
Protons, neutrons, and electrons<span> are the three main subatomic particles found in an atom.</span>
<span>Energy is neither lost nor gained as it transforms from chemical, to heat, to mechanical energy.</span>