Answer:
You will be able to tell whether the unknown cell is from an animal or from a plant through the knowledge of difference between plants and animal cells.
Explanation:
A cell can be defined as the simplest bit of living matter which exhibits a variety of shapes and sizes and that can exist independently.
When a slide of an unknown cell is studied under a microscope, different cell structures would be observed which would be used to conclude if the cell on the slide is a plant or animal cell.
The following features are observed in a plant cell:
--> cellulose cell wall is present
--> Chloroplast is present
--> A large central vacuole is present
--> Centriole is absent
The following features are observed in animal cell:
--> Cellulose cell wall is absent
--> Chloroplast is absent
--> Small vacuoles is present
--> Centriole is present
The difference between a plant and an animal cell can be seen from the features above and a clear knowledge of this will help the student tell whether the unknown cell is from an animal or from a plant.
Answer:
The linear charge density is 5.19 X 10⁻⁶ C/m
Explanation:
The potential difference between two cylinders, is given as
V = (λ/2πε)ln(b/a)
where;
λ is the line charge density on the power line.
b is the distance between the power line = 1 m
a is the radius of the wire = 1.5 cm = 0.015 m
ε is the permittivity of free space = 8.9 X 10⁻¹² C
V*2πε = λ* ln(b/a)
3900 *(2π*8.9 x10⁻¹²)= λ *ln(1/0.015)
2.1812 X 10⁻⁷ = 4.1997* λ
λ = 5.19 X 10⁻⁶ C/m
Therefore, the linear charge density is 5.19 X 10⁻⁶ C/m
Answer:162.516 gm
Explanation:
Given
Quartz contains 46.7 % silicon by mass
i.e.Silicon is 46.7 % by mass
Total mass of Quartz m=348 gm
46.7% of 348 gm
Answer:
4. Downward and its value is constant
Explanation:
As this is a case of projectile motion, we use the reference frame where upward direction to be positive for
, and in the same way to be negative in the downward direction. On another hand, we have that gravity is always acting this means that gravitational acceleration g is directed downward constantly over the dart not only during the upward but also during the downward part of the trajectory. And it is ruled by the following equations.
For the x-axis


For the y-axis


Where
, is the initial velocity.