Answer:
can't see anything sorry can't help
We first determine the vertex by using the formula,<span>-b/2a = vertex, in order to get the values for the t-coordinate. That is why we got
</span>
v_y=26.5 sin(53)=21.163v_x=26.5 cos(53)=15.948
then
let x=0since you are going to land on a 3m tally=-.5(9.8)t^2+ 21.163*t
y=0=-4.9t+21.163t=4.31
vx*4.31= total distance travelled=68.88m
Then for the first wheel, you have 15.948m=vxdetermine the time when he reaches 23 meters, that is
23/15.948=1.44218 sec
substitute t with1.44218 sec, then determine the height.
h(1.44218)=20.329
determine vertex by using a graphing calculatort=2.1594s h=22.85m
using the time value of the vertex, determine horizontal distance travelled
34.438m away from cannon
Answer:
<h3>473.8 m/s; 473.8 m/s</h3>
Explanation:
Given the initial velocity U = 670m/s
Horizontal velocity Ux = Ucos theta
Vertical component of the cannon velocity Uy = Usin theta
Given
U = 670m/s
theta = 45°
horizontal component of the cannonball’s velocity = 670 cos 45
horizontal component of the cannonball’s velocity = 670(0.7071)
horizontal component of the cannonball’s velocity = 473.757m/s
Vertical component of the cannonball’s velocity = 670 sin 45
Vertical component of the cannonball’s velocity = 670 (0.7071)
Vertical component of the cannonball’s velocity = 473.757m/s
Hence pair of answer is 473.8 m/s; 473.8 m/s
in cgs system, plank's constant= h=6.626 x10⁻²⁶ erg s
Value of Plank's constant in SI system= 6.626 x10⁻³⁴ Js
now 1 Joule= 10⁷ ergs
so h= 6.626 x10⁻³⁴ Js (10⁷ ergs/1J)
h=6.626 x10⁻²⁷ erg s
Burning fossil fuels emits a number of air pollutants that are harmful to both the environment and public health. Sulfur dioxide (SO2) emissions, primarily the result of burning coal, contribute to acid rain and the formation of harmful particulate matter.