Answer:
Both objects will undergo the same change in velocity
Explanation:
m = Mass of the Earth = 5.972 × 10²⁴ kg
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
r = Radius of Earth = 6371000 m
m = Mass of object
Any object which is falling has only the acceleration due to gravity.

The acceleration due to gravity on Earth is 9.81364 m/s²
So, the speeds of the objects will change at an equal rate of 9.81364 m/s² but the change will be negative when an object is thrown up.
Hence, both objects will undergo the same change in velocity.
Answer:

Explanation:
Average speed is given by
where
is total distance and
is time.
Plugging in given values, we get:
.
Answer:
g'(10) = 
Explanation:
Since g is the inverse of f ,
We can write
g(f(x)) = x <em> </em><em>(Identity)</em>
Differentiating both sides of the equation we get,
g'(f(x)).f'(x) = 1
g'(10) =
--equation[1] Where f(x) = 10
Now, we have to find x when f(x) = 10
Thus 10 =
+ 2
= 8
x = 
Since f(x) =
+ 2
f'(x) = -
f'(
) = -4 × 4 = -16
Putting it in equation 1, we get:
We get g'(10) = -