1. Millions of gallons of water are wasted by households in America on a yearly basis as a result of wastage of water in the laundry rooms. There are many ways by which water can be conserved in the laundry room, these include:
1. Using a high efficiency washing machine.
2. Choosing the right load sizes and cycles when using washing machines.
3. Wearing clothes more than once before washing them.
4. Collection of grey and rain water.
5. Treat difficult stains before washing them.
2. Using a high efficiency machine will ensure that water is used efficiently. A high efficiency washing machine uses much less water and save about 6,000 gallons of water for an average family on a yearly basis according to Environmental Protection Agency.
Grey water refers to water that have used once. Water that has been used for washing clothes or bathing can be collected again, recycle and use for some household needs such as gardening, flushing of toilet, etc. Water tanks can also be installed to collect rain water which can be used for washing clothes. This will have positive effect on household overall water consumption.
A) The answer is 11.53 m/s
The final kinetic energy (KEf) is the sum of initial kinetic energy (KEi) and initial potential energy (PEi).
KEf = KEi + PEi
Kinetic energy depends on mass (m) and velocity (v)
KEf = 1/2 m * vf²
KEi = 1/2 m * vi²
Potential energy depends on mass (m), acceleration (a), and height (h):
PEi = m * a * h
So:
KEf = KEi + <span>PEi
</span>1/2 m * vf² = 1/2 m * vi² + m * a * h
..
Divide all sides by m:
1/2 vf² = 1/2 vi² + a * h
We know:
vi = 9.87 m/s
a = 9.8 m/s²
h = 1.81 m
1/2 vf² = 1/2 * 9.87² + 9.8 * 1.81
1/2 vf² = 48.71 + 17.74
1/2 vf² = 66.45
vf² = 66.45 * 2
vf² = 132.9
vf = √132.9
vf = 11.53 m/s
b) The answer is 6.78 m
The kinetic energy at the bottom (KE) is equal to the potential energy at the highest point (PE)
KE = PE
Kinetic energy depends on mass (m) and velocity (v)
KE = 1/2 m * v²
Potential energy depends on mass (m), acceleration (a), and height (h):
PE = m * a * h
KE = PE
1/2 m * v² = m * a * h
Divide both sides by m:
1/2 * v² = a * h
v = 11.53 m/s
a = 9.8 m/s²
h = ?
1/2 * 11.53² = 9.8 * h
1/2 * 132.94 = 9.8 * h
66.47 = 9.8 * h
h = 66.47 / 9.8
h = 6.78 m
Answer:
5) Displacement = +3.125 m
Displacement is in the same direction as the force vector.
6) Force = -53.89 N
Force is in an opposite direction relative to the displacement.
Explanation:
5) We are given;
Force; F = 160 N.
Workdone; W = +500 J
Now, formula for workdone is;
W = Force × displacement
Thus, displacement = Work/force
Displacement = 500/160
Displacement = +3.125 m
Thus, displacement is in the same direction as the force vector.
6) We are given;
Displacement; d = 18 m.
Workdone; W = -970 J
Like in the first answer above,
Workdone = Force × Displacement
Thus;
Force = Workdone/Displacement
Force = -970/18
Force = -53.89 N
Since force is negative and displacement is positive, it means force is in an opposite direction relative to the displacement.
Answer:
1.85 J/K
Explanation:
The computation of total change in entropy is shown below:-
Change in Entropy = Sum Q ÷ T
= 

= -3.12 + 4.97
= 1.85 J/K
Therefore for computing the total change in entropy we simply applied the above formula.
As we can see that there is heat entering the reservoir so it will be negative while cold reservoir will be positive else the process would be impossible.
Answer:
All of these answers are dependent upon the specific scenario, but here are some general answers.
1. An object with a greater height will have more potential energy.
2. Potential energy can be changed into kinetic energy as an object falls. It loses height (potential energy) and gains speed (kinetic energy).
3. Depends on what scenario your class had.