Answer:
Explanation:36.05 km
Given
First car travels
South
then turns and travels
east
Suppose south as negative y axis and east as positive x axis
So, 

Displacement is the shortest between initial and final point
Dispalcement
Displacement
Displacement
Magnitude 
Magnitude
Answer:Final volume after pressure is applied=4,292cm3
Explanation:
Using the bulk modulus formulae
We have that The bulk modulus of waTer is given as
K =-V dP/dV
Where K, the bulk modulus of water = 2.15 x 10^9N/m^2
2.15 x 10^9N/m^2= - 4,300 x 4 × 106N/m2 / dV
dV = - 4,300 x 4 × 10^6N/m^2/ 2.15 x 10^9N/m^2
dV (change in volume)= -8.000cm^3
Final volume after pressure is applied,
V= V+ dV
V= 4300cm3 + (-8.000cm3)
=4300cm3 - 8.000cm3
Final Volume, V =4,292cm3
The speed of the brick dropped by the builder as it hits the ground is 17.32m/s.
Given the data in the question;
Since the brick was initially at rest before it was dropped,
- Initial Velocity;

- Height from which it has dropped;

- Gravitational field strength;

Final speed of brick as it hits the ground; 
<h3>Velocity</h3>
velocity is simply the same as the speed at which a particle or object moves. It is the rate of change of position of an object or particle with respect to time. As expressed in the Third Equation of Motion:

Where v is final velocity, u is initial velocity, h is its height or distance from ground and g is gravitational field strength.
To determine the speed of the brick as it hits the ground, we substitute our giving values into the expression above.

Therefore, the speed of the brick dropped by the builder as it hits the ground is 17.32m/s.
Learn more about equations of motion: brainly.com/question/18486505
Explanation:
Basaltic lava
Basaltic lava generally takes two distinct forms known by the Hawaiian terms pahoehoe and aa. Pahoehoe has a smooth wavy surface that resembles twisted rope. It advances by extruding molten toes of lava beneath a thin, flexible crust. As it travels pahoehoe lava often changes to blocky flows called aa.
Answer:
The current drawn by Horace’s reading glasses is 0.8 A.
Explanation:
Given that,
Resistance of each bulb, R = 2 ohms
Voltage of the system, V = 3.2 volts
These two bulbs are connected in series. The equivalent resistance will be 2 ohms +2 ohms = 4 ohms
Let I is the current drawn by Horace’s reading glasses. Using Ohm's law to find it such that :

So, the current drawn by Horace’s reading glasses is 0.8 A.