Answer:
Hay diversas leyes que podemos usar acá.
Acá sabemos que la vejiga aumenta su tamaño al reducir la presión, esto tiene sentido, pues al haber menos presión, hay menos fuerza que comprime la vejiga, lo que le permite aumentar su volumen.
Acá tenemos una relación inversa de la forma: V = K/P
Una relación inversa donde la presión esta en el denominador y K es un termino que no depende ni del volumen ni de la presión.
Entonces, a medida que aumenta P, el denominador aumenta, por lo que el valor del volumen decrece.
Un ejemplo de una ecuación similar es la del gas ideal, por ejemplo, para un gas ideal dentro de un globo de volumen V para una dada presión P:
V = nRT/P
donde n es el numero de moles, R es la constante termodinámica y T es la temperatura, acá podemos ver que esta ecuación tiene la misma forma fundamental que la escrita arriba.
I think the answer is D, but I’m not at all sure :l
Decomposers is the correct answer. ( I got your back bro)
The resistance of the lamp is apparently 50V/2A = 25 ohms.
When the circuit is fed with more than 50V, we want to add
another resistor in series with the 25-ohm lamp so that the
current through the combination will be 2A.
In order for 200V to cause 2A of current, the total resistance
must be 200V/2A = 100 ohms.
The lamp provides 25 ohms, so we want to add another 75 ohms
in series with the lamp. Then the total resistance of the circuit is
(75 + 25) = 100 ohms, and the current is 200V/100 ohms = 2 Amps.
The power delivered by the 200V mains is (200V) x (2A) = 400 watts.
The lamp dissipates ( I² · R ) = (2² · 25 ohms) = 100 watts.
The extra resistor dissipates ( I² · R) = (2² · 75 ohms) = 300 watts.
Together, they add up to the 400 watts delivered by the mains.
CAUTION:
300 watts is an awful lot of power for a resistor to dissipate !
Those little striped jobbies can't do it.
It has to be a special 'power resistor'.
300 watts is even an unusually big power resistor.
If this story actually happened, it would be cheaper, easier,
and safer to get three more of the same kind of lamp, and
connect THOSE in series for 100 ohms. Then at least the
power would all be going to provide some light, and not just
wasted to heat the room with a big moose resistor that's too
hot to touch.
Answer:
The speed of transverse waves in this string is 519.61 m/s.
Explanation:
Given that,
Mass per unit length = 5.00 g/m
Tension = 1350 N
We need to calculate the speed of transverse waves in this string
Using formula of speed of the transverse waves
Where, = mass per unit length
T = tension
Put the value into the formula
Hence, The speed of transverse waves in this string is 519.61 m/s.