Answer:
Increases
Explanation:
The expression for the capacitance is as follows as;

Here, C is the capacitance,
is the permittivity of free space, A is the area and d is the distance between the parallel plate capacitor.
It can be concluded from the above expression, the capacitance is inversely proportional to the distance. According to the given problem, the capacitor is disconnected from the battery and the distance between the plates is increased. Then, the capacitance of the given capacitor will decrease in this case.
The expression for the energy stored in the parallel plate capacitor is as follows;

Here, E is the energy stored in the capacitor, C is the capacitance and Q is the charge.
Energy stored in the given capacitor is inversely proportional to the capacitor. The charge on the capacitor is constant. In the given problem, as the distance between the parallel plates is being separated, the energy stored in this capacitor increases.
Therefore, the option (c) is correct.
Answer:
Explanation:
Theoretical efficiency = T₁ - T₂ / T₁ where T₁ and T₂ is absolute temperature of hot and cold end of the heat engine.
= 600 / (273 + 700 )
= 600 / 973
= .6166
operating efficiency = 40% of .6166
= .4 x .6166
= .2466 = 24.66 %
efficiency = work output / heat input
= 5000 / heat input = .2466
heat input = 5000 / .2466
= 20275.75 J .
HEAT EXTRACED = 20275.75 J.
Answer:negative charge, small relative mass, and found outside the nucleus
Explanation:
The electron is one of the subatomic particles. It is negatively charged and has a relatively small or somewhat negligible mass. It is found outside the nucleus on the orbits. The electron is bound to the nucleus by electrostatic forces of attraction in the Bohr's model of the atom.
Kepler's three laws of planetary motion can be stated as follows: (1) All planets move about the Sun in elliptical orbits, having the Sun as one of the foci. (2) A radius vector joining any planet to the Sun sweeps out equal areas in equal lengths of time.
Answer:
There is an arrow up for air resistance and an arrow down for gravity. The arrow up is longer than the arrow down.
Explanation:
The text of the problem says that the skydiver is slowing down: this means that he has an acceleration, which is directed opposite to the motion of the skydiver. Since the motion is downward, the acceleration must be upward.
There are two forces acting on the skydiver: the gravity (downward) and the air resistance (upward). According to Newton's second law:
F=ma
the acceleration has the same direction of the net force, so the net force must also be upward: therefore, the air resistance must be greater than the gravity, so the arrow up for air resistance is longer than the arrow down for gravity.