
Actually Welcome to the concept of Efficiency.
Here we can see that, the Input work is given as 2.2 x 10^7 J and the efficiency is given as 22%
The efficiency is => 22% => 22/100.
so we get as,
E = W(output) /W(input)
hence, W(output) = E x W(input)
so we get as,
W(output) = (22/100) x 2.2 x 10^7
=> W(output) = 0.22 x 2.2 x 10^7 => 0.484 x 10^7
hence, W(output) = 4.84 x 10^6 J
The useful work done on the mass is 4.84 x 10^6 J
consider east-west direction along X-axis and north-south direction along Y-axis
= velocity of migrating robin relative to air = 12 j m/s
(where "j" is unit vector in Y-direction)
= velocity of air relative to ground = 6.3 i m/s
(where "i" is unit vector in X-direction)
= velocity of migrating robin relative to ground = ?
using the equation
=
+ 
= 12 j + 6.3 i
= 6.3 i + 12 j
magnitude : sqrt((6.3)² + (12)²) = 13.6 m/s
direction : tan⁻¹(12/6.3) = 62.3 deg north of east
The height attained by the ball is 11.86m
a ball is shot from the ground straight up into the air its initial and final velocity is
initial velocity, u = 50 ft/s = 50×0.305 = 15.25m/s
final velocity ,v = 0 m/s
gravity =-9.8 m/s²
( negative sign shows acceleration in opposite direction)
height =?
using the newton motion of equation
v² = u² + 2as
where
a= acceleration due to gravity(g)
s = height
v² = u² + 2gs
(0)² = (15.25)² + 2×(-9.8)×s
0 = (15.25)² - 19.6 × s
s= - (15.25)²/ 19.6
s = 11.86m
after ignoring the air resistance the maximum height of the ball is 11.86m
To learn more about motion under gravity -
brainly.com/question/27962354
#SPJ4
Answer:
the train is moving at the speed of v = 1.79 m/s
Explanation:
given,
rain drop is falling vertically down with the speed of = 3.84 m/s
angle of the rain drop = 25°
tan θ =
tan 25° =
v =3.84 × tan 25°
v = 1.79 m/s
hence, the train is moving at the speed of v = 1.79 m/s