♥ If the wind is strong enough it can do so.
♥ By having a strong enough wind you can blow out the fire before the flame can consume any more vapor.
♥ If the wind is fast enough, like a birthday cake candle for example, the wind will burn out.
We have the meats Arby’s we beat them kids
Answer:
2.11eV
Explanation:
We know that speed of light is it's wavelength times frequency.

Planck's constant is 
The energy gap is calculated by multyplying the light's frequency by planck's constant:

Hence, the energy gap is 2.11eV
0.2 is the value of coefficient of friction (k)
F=kN
F=horizontal force
n=Normal Force
k=coefficient of friction
k=F/N
k=200/1000
k=0.2
The ratio of the normal force pushing two surfaces together to the frictional force preventing motion between them is known as the friction coefficient. Usually, the Greek letter mu is used to indicate it .N is the normal force, and F is the frictional force, hence F = N/N.
Due to the fact that both F and N are measured in units of force, the coefficient of friction has no dimensions (such as newtons or pounds). The coefficient of friction can have a variety of values for both static and dynamic friction. Static friction occurs when an object encounters friction that resists any applied force, keeping the object at rest until the static frictional force is released. In kinetic friction, the frictional force resists the motion of the object.
To know more about coefficient of friction visit brainly.com/question/136431
#SPJ1
As the scattering angle of the photon increases, the wavelength associated with the photon increases.
<h3><u>
Explanation:</u></h3>
The particle with quantum mechanical property is known as Compton wavelength. The wavelength of a photon increases during collision. When the scattering angle of the photon is 0 degree then the photon's wavelength increases by 0 and when the scattering angle is 180 degree then the wavelength of the photon will become double. This is known as Compton wavelength.
When a photon undergoes collision process, the photo loses its energy and this energy is transferred to the electrons. This causes energy of the photon to decrease and thus the frequency also decreases. Thus, the wavelength of the photon will increase.