The orbital with the lowest energy is 3s.
Answer:
t = 2.58*10^-6 s
Explanation:
For a nonconducting sphere you have that the value of the electric field, depends of the region:

k: Coulomb's constant = 8.98*10^9 Nm^2/C^2
R: radius of the sphere = 10.0/2 = 5.0cm=0.005m
In this case you can assume that the proton is in the region for r > R. Furthermore you use the secon Newton law in order to find the acceleration of the proton produced by the force:

Due to the proton is just outside the surface you can use r=R and calculate the acceleration. Also, you take into account the charge density of the sphere in order to compute the total charge:

with this values of a you can use the following formula:

hence, the time that the proton takes to reach a speed of 2550km is 2.58*10^-6 s
Answer:
Against but it really depends on the situation
<span>F x L = W x X whereW=weight is total load = 80, L is length from fulcrum which is the unknown and what we are solving for. x= length we know. and F equals 50 force we know. So (W*X)/F=LL equals 64</span>
Explanation:
A student solving for the acceleration of an object has applied appropriate physics principles and obtained the expression :

Where


m = 7 kg
So, the correct step for obtaining a common denominator for the two fractions in the expression in solving for a is (a) and the value of a is :


Hence, the correct option is (a).