No of moles = given mass ÷ molecular mass
n = 55.98 ÷ (12+19×2+35.5×2)
Answer is: <span>concentration of NOCl is 3.52 M.
</span>
Balanced chemical reaction: 2NOCl(g) ⇄ 2NO(g) + Cl₂<span>(g).
Kc = 8.0.
</span>[NOCl] = 1.00 M; equilibrium concentration.
[NO] = x.
[Cl₂] = x/2; equilibrium concentration of chlorine.<span>
Kc = </span>[Cl₂] ·[NO]² / [NOCl].
8.00 = x/2 · x² / 1.
x³/2 = 8.
x = ∛16.
x = 2.52 M.
co(NOCl) = [NOCl] + x.
co(NOCl) = 1.00 M + 2.52 M.
co(NOCl) = 3.52 M; the initial concentration of NOCl.
Na3PO4*12H2O + BaCl2*2H2O = Ba3(PO4)2 + NaCl + H2O
add barium chloride to your Na3PO4.12H2O a white precipitate of Ba3(PO4)2 will be formed wrt salt(NaCl) and water(H20) if Na3PO4.12H2O. will be there.
Since f=ma assuming you knew the mass of the marble and the total amount of force acting on it than you would divide the amount of force by the mass.
Scientists expected that the law of conservation of mass would apply to nuclear fission in terms of the masses of the subatomic particles. In reality, the mass of an atom is not equal to the sum of the masses of the subatomic particles that make it up. This is because of the energy that binds the subatomic particles. This energy has mass and when the bond is broken, the mass of the energy of the bonds is lost resulting to what we now cal, a mass defect.