Answer:
Mass = 14.3 g
Explanation:
Given data:
Mass of Mg(OH)₂ = 16.0 g
Mass of HCl = 11.0 g
Mass of MgCl₂ = ?
Solution:
Chemical equation:
Mg(OH)₂ + 2HCl → MgCl₂ + 2H₂O
Number of moles of Mg(OH)₂ :
Number of moles = mass/ molar mass
Number of moles = 16.0 g/ 58.3 g/mol
Number of moles = 0.274 mol
Number of moles of HCl :
Number of moles = mass/ molar mass
Number of moles = 11.0 g/ 36.5 g/mol
Number of moles = 0.301 mol
Now we will compare the moles of Mg(OH)₂ and HCl with MgCl₂.
Mg(OH)₂ : MgCl₂
1 : 1
0.274 : 0.274
HCl : MgCl₂
2 : 1
0.301 : 1/2×0.301 = 0.150
The number of moles of MgCl₂ produced by HCl are less so it will limiting reactant.
Mass of MgCl₂:
Mass = number of moles × molar mass
Mass = 0.150 × 95 g/mol
Mass = 14.3 g
I assume what you're asking about is, how does the temperature changes when we increase water's mass, according the formula for heat ?
Well the formula is :

(where Q is heat, m is mass, c is specific heat and

is change in temperature. So according this formula, increasing mass will increase the substance's heat, but won't effect it's temperature since they are not related. Unless, if you want to keep the substance's heat constant, in that case when you increase it's mass you will have to decrease the temperature
Answer:
An egg will be your ans because it needs to be broken before we can cook it or use it for making other delicases
Explanation:
<em><u>Hope </u></em><em><u>it </u></em><em><u>helps </u></em>
Answer: 40 grams
Explanation:
The quantity of Heat Energy (Q) required to heat a substance depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)
Thus, Q = MCΦ
Since Q = 93.4J
M = ?
C = 0.129 J/g.C
Φ = 40.4°C - 22.3°C = 18.1°C
Then, Q = MCΦ
Make Mass, M the subject formula
M = Q/CΦ
M = (93.4J) / (0.129 J/g.C x 18.1°C)
M = 93.4J / 2.33J/g
M = 40 g
Thus, the mass of the lead is 40 grams