Answer:
A) yes
B) The average mass of 12 pennies should be expressed as
( 3.131 + 3.129 + -------- X12 ) g / 12
where X12 = is the mass of the 12th penny
Explanation:
A) I think the the Bureau of Mint changed the way it made pennies because from the experiment and observation carried out on 15 different pennies it can be seen that they had different weights and this difference is associated with the period/time of production of the different pennies,
B ) The average mass of any object should be expressed in the si unit of mass and not having ($) sign attached to the value instead it should be expressed in grams or kilograms (s.i unit of mass )
The average mass of 12 pennies should be expressed as
( 3.131 + 3.129 + -------- X12 ) g / 12
where X12 = is the mass of the 12th penny
The bond between the 2 Cl atoms in a Cl₂ molecule is a covalent bond.
to break this covalent bond, energy is required.
when new bonds form, energy is released as the bond formation makes the molecule stable. molecules with low energy levels are usually stable.
To break the covalent bond, energy is required in other words energy is absorbed.
therefore to break the covalent bond in Cl₂ molecule
1)energy is absorbed
Answer:
The atmosphere traps heat energy from the Sun and energy radiated from Earth's surface helping to maintain Earth's climate
Explanation:
Earth's atmosphere keeps much of the Sun's energy from escaping into space. This process, called the greenhouse effect, keeps the planet warm enough for life to exist. The atmosphere allows about half of the Sun's heat energy (50%) to reach Earth's surface.
None. Both chlorines and both hydrogens are single-bonded to the central carbon atom; the molecule is comprised of four single bonds and no double bonds.
Hope this helps!
Answer : The amount of heat evolved by a reaction is, 4.81 kJ
Explanation :
Heat released by the reaction = Heat absorbed by the calorimeter + Heat absorbed by the water
![q=[q_1+q_2]](https://tex.z-dn.net/?f=q%3D%5Bq_1%2Bq_2%5D)
![q=[c_1\times \Delta T+m_2\times c_2\times \Delta T]](https://tex.z-dn.net/?f=q%3D%5Bc_1%5Ctimes%20%5CDelta%20T%2Bm_2%5Ctimes%20c_2%5Ctimes%20%5CDelta%20T%5D)
where,
q = heat released by the reaction
= heat absorbed by the calorimeter
= heat absorbed by the water
= specific heat of calorimeter = 
= specific heat of water = 
= mass of water = 254 g
= change in temperature = 
Now put all the given values in the above formula, we get:
![q=[(783J/^oC\times -2.28^oC)+(254g\times 4.184J/g^oC\times -2.28^oC)]](https://tex.z-dn.net/?f=q%3D%5B%28783J%2F%5EoC%5Ctimes%20-2.28%5EoC%29%2B%28254g%5Ctimes%204.184J%2Fg%5EoC%5Ctimes%20-2.28%5EoC%29%5D)

Therefore, the amount of heat evolved by a reaction is, 4.81 kJ