Here we have to get the
of the reaction at 520 K temperature.
The
of the reaction is 1.705 atm
We know the relation between
and
is
, where
= The equilibrium constant of the reaction in terms of partial pressure,
= The equilibrium constant of the reaction in terms of concentration and N = number of moles of gaseous products - Number of moles of gaseous reactants.
Now in this reaction, PCl₃ + Cl₂ ⇄ PCl₅
Thus number of moles of gaseous product is 1, and number of moles of gaseous reactants are 2. Thus N = |1 - 2| = 1 mole
The given value of
is 4.0×10⁻²
The molar gas constant, R = 0.082 L. Atm. mol⁻¹. K⁻¹ and temperature, T = 520 K.
On plugging the values in the equation we get,

Or,
= 1.705 atm
Thus, the
of the reaction is 1.705 atm
Answer:
The last option
Explanation:
The Bohr model was an attempt to explain atomic hydrogen's spectrum. This was done by establishing energy levels of separate electron orbits in the atom.Thos model was followed by the Schrödinger model.
Answer:
the answer is the second choice actual force
Answer:
air is not a mixture because of scientists freezing it and finding different liquids, it is a mixture because the compounds that make up air e.g. oxygen (o2), Carbon dioxide (co2) and the most important Nitrogen which is an element and makes up 78.09% of air are not chemically bound in the way that compounds are
Explanation:
Answer:
(1) Bromination, (2) E2 elimination and (3) epoxidation
Explanation:
- In the first step, -OH group in cyclopentanol is replaced by more facile leaving group Br by treating cyclopentanol with

- In the second step, E2 elimination in presence of strong base e.g. NaOEt/EtOH produce cyclopentene
- In the third step, treatment of cyclopentene with mCPBA produces 1,2-epoxycyclopentane
- Full reaction scheme has been shown below