Answer:

Explanation:
In this case, we can start with the reaction:

If we check the reaction, we will have 2 X and Y atoms on both sides. So, <u>the reaction is balanced</u>. Now, the problem give to us two amounts of reagents. Therefore, we have to find the <u>limiting reagent</u>. The first step then is to find the moles of each compound using the <u>molar mass</u>:


Now, we can <u>divide by the coefficient</u> of each compound (given by the balanced reaction):


The smallest value is for "X", therefore this is our <u>limiting reagent</u>. Now, if we use the <u>molar ratio</u> between "X" and "XY" we can calculate the moles of XY, so:

Finally, with the molar mass of "XY" we can calculate the grams. Now, we know that 1 mol X = 85 g X and 1 mol
= 48 g
(therefore 1 mol Y = 24 g Y). With this in mind the <u>molar mass of XY</u> would be 85+24 = 109 g/mol. With this in mind:

I hope it helps!
Based on the balanced chemical reaction presented above, every mole of magnesium (Mg) yields one mole of diatomic hydrogen (H2). When converted to masses, every 24.3 grams of magnesium yields 2 grams of hydrogen.
From the given, there are 20 grams of magnesium available for the reaction. With this amount, the expected yield of hydrogen is 1.646 grams. To calculate the percent yield, divide the actual yield to the hypothetical yield.
*The case is impossible because the actual yield is greater than the theoretical yield.
If we assume that there had been a typographical error and that the actual yield is 0.7 grams instead of 1.7 grams, the percent yield becomes 42.5%. Thus, the answer is letter E.
Answer:
I think it is covalent bonding...
Explanation:
The bonding is covalent in homonuclear diatomic molecules. Each atom in the molecule has the same electronegativity, which means electrons are shared equally between the two. The electronegativity of the atoms in heteronuclear diatomic molecules varies, and these molecules have polar covalent bonds. A dipole is formed when a molecule interacts with another molecule. (i think it's covalent bonding but i might be wrong)
hope this helps...