Answer:
Explanation:
350 N force stretches the spring by 30 cm
spring constant K = 350 / 0.30 = (350 / 0.3) N / m
To calculate work done by a spring force we proceed as follows
spring force when the spring is stretched by x = Kx
This force is variable so work done by it can be calculated by integration
Work done by it in stretching from x₁ to x₂
W = ∫ F dx
= ∫ Kx dx with limit from x₁ to x ₂
= 1/2 K ( x₂² - x₁² )
Putting the given values of x₁ = 0.50 m , x₂ = 0.8 m
Work done
= 1/2 x (350 / 0.3)x ( 0.80² - 0.50² )
= 227.50 J
At a point near the rim of the disk, it will have a<span> non-zero radial acceleration and a zero tangential acceleration. Also known as centripetal acceleration, radial acceleration takes place along the radius of the disk. On the other hand, the tangential acceleration is along the path of disk's motion.</span>
Answer: a) electromagnetic waves
Explanation:
An electromagnetic wave begins when an electrically charged particle vibrates. This causes a vibrating electric field, which in turn creates a vibrating magnetic field. The two vibrating fields together form an electromagnetic wave.
Hope this helps:)
Answer:
9.98 × 10⁻⁹ C
Explanation:
mass, m = 1.00 × 10⁻¹¹ kg
Velocity, v = 23.0 m/s
Length of plates D₀ = 1.80 cm = 0.018 m
Magnitude of electric field, E = 8.20 × 10⁴ N/C
drop is to be deflected a distance d = 0.290 mm = 0.290 × 10⁻³ m
density of the ink drop = 1000 kg/m^3
Now,
Time =
or
Time =
or
Time = 6.9 × 10⁻⁴ s
Now, force due to the electric field, F = q × E
where, q is the charge
Also, Force = Mass × acceleration
q × E = 1.00 × 10⁻¹¹ × a
or
a =
Now from the Newton's equation of motion
where,
d is the distance
u is the initial speed
a is the acceleration
t is the time
or
or
q = 9.98 × 10⁻⁹ C