Answer:

Explanation:
First of all, we need to calculate the total energy supplied to the calorimeter.
We know that:
V = 3.6 V is the voltage applied
I = 2.6 A is the current
So, the power delivered is

Then, this power is delivered for a time of
t = 350 s
Therefore, the energy supplied is

Finally, the change in temperature of an object is related to the energy supplied by

where in this problem:
E = 3276 J is the energy supplied
C is the heat capacity of the object
is the change in temperature
Solving for C, we find:

Acceleration = ▵v/▵t
Time = d/v
Fisrt calculate time : ( 118/29 ) = 4 seconds
Then calculate acceleration
A = 29/4 = 7.25 m/s²
Now the force.
Force = mass * acceleration.
F= 1,019 * 7.25
F= 7,387 N
Answer:
<h2>A.
6pF</h2>
Explanation:
If unknown capacitance C1, C2, C3 and C4 are connected in series to one another, their equivalent capacitance of the circuit will be expressed as shown

Given the capacitance's 3.0 pF, 2.0 pF, 5.0 pF and X pF connected in series to each other. If the equivalent capacitance of the circuit is 0.83 pF, then to get X, we will apply the formula above;

C₄ ≈ 6pF
Hence the value of the X capacitor is approximately 6pF
Answer:
by finding melting and boiling points
Explanation: