Answer:
19.264× atoms are present in 3.2 moles of carbon.
Explanation:
It is known that one mole of each element is composed of Avagadro's number of atoms. This is same for all the elements in the periodic table.
So, as 1 mole of any element = Avagadro's number of atoms = 6.02× atoms
It is as simple as understanding a dozen of anything is equal to 12 pieces of that object.
As here the moles of carbon is given as 3.20 moles, the number of atoms in this mole can be determined as below.
1 mole of carbon = 6.02 × atoms
Then, 3.20 moles of carbon = 3.20 × 6.02 × atoms
Thus, 19.264× atoms are present in 3.2 moles of carbon.
Small ions have small areas. There is less resistance as they move through the solution.
For example, in molten salts, the conductivity of <span>Li+</span> is greater than that of <span>Cs+</span>.
Small ions have high charge density.
Answer:
Active transport
Explanation:
Sodium-potassium pumps are examples of Active type of cellular transport. Sodium potassium pump exchanges sodium ions from potassium ions through the plasma membrane of animal cells.
Whereas Active transport can be defined as movement of ions and molecules across a cell membrane to the region of higher concentration with the help of enzymes and energy.
Is A “the density of the ice decreased as it melted”
Answer:
Permanent = false
Explanation:
All of the other choices are true