1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gtnhenbr [62]
3 years ago
6

Elias serves a volleyball at a velocity of 16 m/s. The mass of the volleyball is 0.27 kg. What is the height of the volleyball a

bove the gym floor when its total mechanical energy is 41.70 J? Round to the nearest tenth\
Physics
2 answers:
evablogger [386]3 years ago
7 0

Ingenuity says that the answer is 2.7 m

givi [52]3 years ago
4 0
Hello! The anwser is 2.7! I hope this helps! ^^
You might be interested in
How can different objects interact when they are not even touching?
jeka94

Answer: Magnetic and gravitational force

Explanation: When a magnet and an iron nail are kept at a distance,the magnet attracts the nail without touching using magnetic force. In this example, the magnet and the nail are interacting.

The earth pulls the moon towards it and keeps it in orbit without touching it, using gravitational force. In this example,the moon and the earth are interacting.

PLEASE RATE 5 STARS AND VOTE AS BRAINLIEST:)

(^o^)(^o^)(^o^)(^o^)(^o^)(^o^)(^o^)(^o^)(^o^)(^o^)(^o^)(^o^)

3 0
3 years ago
At what height h above the ground does the projectile have a speed of 0.5v?
maw [93]

Answer:

h=\dfrac{3v^2}{8g}

Explanation:

It is given that,

Speed of the projectile is 0.5 v. Let h is the height above the ground. Using the first equation of motion to find it.

v=u+at

v=u-gt

Initial speed of the projectile is v and final speed is 0.5 v.

0.5v=v-gt

t=\dfrac{v}{2g}

g is the acceleration due to gravity

Let h is the height above the ground. Using the second equation of motion as :

h=vt-\dfrac{1}{2}gt^2

h=v\dfrac{v}{2g}-\dfrac{1}{2}g(\dfrac{v}{2g})^2

h=\dfrac{3v^2}{8g}

So, the height of the projectile above the ground is \dfrac{3v^2}{8g}. Hence, this is the required solution.

6 0
3 years ago
Find the quantity of heat needed
krok68 [10]

Answer:

Approximately 3.99\times 10^{4}\; \rm J (assuming that the melting point of ice is 0\; \rm ^\circ C.)

Explanation:

Convert the unit of mass to kilograms, so as to match the unit of the specific heat capacity of ice and of water.

\begin{aligned}m&= 100\; \rm g \times \frac{1\; \rm kg}{1000\; \rm g} \\ &= 0.100\; \rm kg\end{aligned}

The energy required comes in three parts:

  • Energy required to raise the temperature of that 0.100\; \rm kg of ice from (-10\; \rm ^\circ C) to 0\; \rm ^\circ C (the melting point of ice.)
  • Energy required to turn 0.100\; \rm kg of ice into water while temperature stayed constant.
  • Energy required to raise the temperature of that newly-formed 0.100\; \rm kg of water from 0\; \rm ^\circ C to 10\;\ rm ^\circ C.

The following equation gives the amount of energy Q required to raise the temperature of a sample of mass m and specific heat capacity c by \Delta T:

Q = c \cdot m \cdot \Delta T,

where

  • c is the specific heat capacity of the material,
  • m is the mass of the sample, and
  • \Delta T is the change in the temperature of this sample.

For the first part of energy input, c(\text{ice}) = 2100\; \rm J \cdot kg \cdot K^{-1} whereas m = 0.100\; \rm kg. Calculate the change in the temperature:

\begin{aligned}\Delta T &= T(\text{final}) - T(\text{initial}) \\ &= (0\; \rm ^\circ C) - (-10\; \rm ^\circ C) \\ &= 10\; \rm K\end{aligned}.

Calculate the energy required to achieve that temperature change:

\begin{aligned}Q_1 &= c(\text{ice}) \cdot m(\text{ice}) \cdot \Delta T\\ &= 2100\; \rm J \cdot kg \cdot K^{-1} \\ &\quad\quad \times 0.100\; \rm kg \times 10\; \rm K\\ &= 2.10\times 10^{3}\; \rm J\end{aligned}.

Similarly, for the third part of energy input, c(\text{water}) = 4200\; \rm J \cdot kg \cdot K^{-1} whereas m = 0.100\; \rm kg. Calculate the change in the temperature:

\begin{aligned}\Delta T &= T(\text{final}) - T(\text{initial}) \\ &= (10\; \rm ^\circ C) - (0\; \rm ^\circ C) \\ &= 10\; \rm K\end{aligned}.

Calculate the energy required to achieve that temperature change:

\begin{aligned}Q_3&= c(\text{water}) \cdot m(\text{water}) \cdot \Delta T\\ &= 4200\; \rm J \cdot kg \cdot K^{-1} \\ &\quad\quad \times 0.100\; \rm kg \times 10\; \rm K\\ &= 4.20\times 10^{3}\; \rm J\end{aligned}.

The second part of energy input requires a different equation. The energy Q required to melt a sample of mass m and latent heat of fusion L_\text{f} is:

Q = m \cdot L_\text{f}.

Apply this equation to find the size of the second part of energy input:

\begin{aligned}Q_2&= m \cdot L_\text{f}\\&= 0.100\; \rm kg \times 3.36\times 10^{5}\; \rm J\cdot kg^{-1} \\ &= 3.36\times 10^{4}\; \rm J\end{aligned}.

Find the sum of these three parts of energy:

\begin{aligned}Q &= Q_1 + Q_2 + Q_3 = 3.99\times 10^{4}\; \rm J\end{aligned}.

3 0
2 years ago
In a series RLC ac circuit, a second resistor is connected in series with the resistor previously in the circuit. As a result of
AnnyKZ [126]

Answer:

* The first thing we observe is that the frequency response does not change

* The current that circulates in the circuit decreases due to the new resistance at the resonance point,

          Z = R + R₂

Explanation:

The impedance of a series circuit is

          Z₀² = R² + (X_L-X_C) ²

when we place another resistor in series the initial resistance impedance changes to

          Z² = (R + R₂) ² + (X_L - X_C) ²

           

let's analyze this expression

* The first thing we observe is that the frequency response does not change

* The current that circulates in the circuit decreases due to the new resistance at the resonance point,

          Z = R + R₂

8 0
3 years ago
How are electromagnetic waves used in the military?
sweet [91]
It uses electromagnetic radiation waves to enable military communications, navigation, radar, nonintrusive inspection of aircraft, and other equipment. Hope this helps.
7 0
3 years ago
Other questions:
  • How many shells does the element neon have?<br> A. 1<br> B. 2<br> C. 8<br> D. 18
    12·1 answer
  • Wires 1, 2, and 3 each have current moving through them to the right. I1 = 10 A, I2 = 5 A, and I3 = 8 A. Wire 2 is 15 cm long an
    13·1 answer
  • Aristotle believed which of the following to be true?
    11·1 answer
  • Mrs. Buckley asked her physical science class to look at the graph and tell which of the following explanations are most likely
    14·2 answers
  • The speed an object needs to move away from the gravitational pull of the earth is called
    10·1 answer
  • PLZ HELP ME i don’t get this
    12·1 answer
  • Question 3 (1 point)<br> The nucleus occupies most of the space of an atom<br> True<br> O False
    14·1 answer
  • ANSWER THIS QUESTION PLS WILL GIVE BRAINLEST
    9·2 answers
  • The velocity of a car increases from 10 km/h to 50 km/h in 5 seconds. What is its acceleration?
    10·1 answer
  • . a boat can travel in still water. (a) if the boat points directly across a stream whose current is what is the velocity (magni
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!