Answer:
When you blow into a tuba the air vibrates very slowly.
Explanation:
Tuba is a buzz instrument ie sound is produced in it with the help of lip vibration . It is the lowest pitched musical instrument in the brass family .
Due to absence of resonance in it , it produces music of lowest pitch , So when one blows into it the air column of the instrument vibrates very slowly producing low pitched sound.
You are running at constant velocity in the x direction, and based on the 2D definition of projectile motion, Vx=Vxo. In other words, your velocity in the x direction is equal to the starting velocity in the x direction. Let's say the total distance in the x direction that you run to catch your own ball is D (assuming you have actual values for Vx and D). You can then use the range equation, D= (2VoxVoy)/g, to find the initial y velocity, Voy. g is gravitational acceleration, -9.8m/s^2. Now you know how far to run (D), where you will catch the ball (xo+D), and the initial x and y velocities you should be throwing the ball at, but to find the initial velocity vector itself (x and y are only the components), you use the pythagorean theorem to solve for the hypotenuse. Because you know all three sides of the triangle, you can also solve for the angle you should throw the ball at, as that is simply arctan(y/x).
<h3>
Answer:</h3>
1.5 m/s²
<h3>
Explanation:</h3>
We are given;
Force as 60 N
Mass of the Cart as 40 kg
We are required to calculate the acceleration of the cart.
- From the newton's second law of motion, the rate of change in momentum is directly proportional to the resultant force.
- That is, F = ma , where m is the mass and a is the acceleration
Rearranging the formula we can calculate acceleration, a
a = F ÷ m
= 60 N ÷ 40 kg
= 1.5 m/s²
Therefore, the acceleration of the cart is 1.5 m/s²
Answer:
W = ½ m v²
Explanation:
In this exercise we must solve it in parts, in a first part we use the conservation of the moment to find the speed after the separation
We define the system formed by the two parts of the rocket, therefore the forces during internal separation and the moment are conserved
initial instant. before separation
p₀ = m v
final attempt. after separation
= m /2 0 + m /2 v_{f}
p₀ = p_{f}
m v = m /2 
v_{f}= 2 v
this is the speed of the second part of the ship
now we can use the relation of work and energy, which establishes that the work is initial to the variation of the kinetic energy of the body
initial energy
K₀ = ½ m v²
final energy
= ½ m/2 0 + ½ m/2 v_{f}²
K_{f} = ¼ m (2v)²
K_{f} = m v²
the expression for work is
W = ΔK = K_{f} - K₀
W = m v² - ½ m v²
W = ½ m v²