For help with this answer, we look to Newton's second law of motion:
Force = (mass) x (acceleration)
Since the question seems to focus on acceleration, let's get
'acceleration' all alone on one side of the equation, so we can
really see what's going on.
Here's the equation again:
Force = (mass) x (acceleration)
Divide each side by 'mass',
and we have: Acceleration = (force) / (mass) .
Now the answer jumps out at us: The rate of acceleration of an object
is determined by the object's mass and by the strength of the net force
acting on the object.
Answer:
Explanation:
Near point = 56 cm .
near point of healthy person = 25 cm
person suffers from long sightedness
convex lens will be required .
object distance u = 25 cm
image distance v = 56 cm
both will be negative as both are in front of the lens.
lens formula
I/v - 1 / u = 1/f
- 1/56 +1/25 = 1/f
- .01785 + .04 = 1/f
1/f = .02215
f = 45.15 cm .
Build a filter.
Dig water from the ground
Answer:
Explanation:
The work required to push will be equal to work done by friction . Let d be the displacement required .
force of friction = mg x μ where m is mass of the suitcase , μ be the coefficient of friction
work done by force of friction
mg x μ x d = 660
80 x 9.8 x .272 x d = 660
d = 3 .1 m .
Answer:
Mass released = 8.6 g
Given data:
Initial number of moles nitrogen= 0.950 mol
Initial volume = 25.5 L
Final mass of nitrogen released = ?
Final volume = 17.3 L
Formula:
V₁/n₁ = V₂/n₂
25.5 L / 0.950 mol = 17.3 L/n₂
n₂ = 17.3 L× 0.950 mol/25.5 L
n₂ = 16.435 L.mol /25.5 L
n₂ = 0.644 mol
Initial mass of nitrogen:
Mass = number of moles × molar mass
Mass = 0.950 mol × 28 g/mol
Mass = 26.6 g
Final mass of nitrogen:
Mass = number of moles × molar mass
Mass = 0.644 mol × 28 g/mol
Mass = 18.0 g
Mass released = initial mass - final mass
Mass released = 26.6 g - 18.0 g
Mass released = 8.6 g
Read more on Brainly.com - brainly.com/question/15623698#readmore