Answer:
109.7178g of H2O
Explanation:
First let us generate a balanced equation for the reaction. This is illustrated below:
2C3H8O + 9O2 —> 6CO2 + 8H2O
Next we will calculate the molar mass and masses of C3H8O and H20. This is illustrated below:
Molar Mass of C3H8O = (3x12.011) + (8x1.00794) + 15.9994 = 36.033 + 8.06352 + 15.9994 = 60.09592g/mol.
Mass of C3H8O from the balanced equation = 2 x 60.09592 = 120.19184g
Molar Mass of H2O = (2x1.00794) + 15.9994 = 2.01588 + 15.9994 = 18.01528g/mol
Mass of H2O from the balanced equation = 8 x 18.01528 = 144.12224g
From the equation,
120.19184g of C3H8O produced 144.12224g of H20.
Therefore, 91.5g of C3H8O will produce = (91.5 x 144.12224) /120.19184 = 109.7178g of H2O
Cao + H2O ---->Ca(OH)2
Calculate the number of each reactant and the moles of the product
that is
moles = mass/molar mass
The moles of CaO= 56.08g/ 56.08g/mol(molar mass of Cao)= 1mole
the moles of water= 36.04 g/18 g/mol= 2.002moles
The moles of Ca (OH)2=74.10g/74.093g/mol= 1mole
The mass of differences of reactant and product can be therefore
explained as
1 mole of Cao reacted completely with 1 mole H2O to produce 1 mole of Ca(OH)2. The mass of water was in excess while that of CaO was limited
Polar protic solvents actually speed up the rate of the unimolecular substitution reaction because the large dipole moment of the solvent helps to stabilize the transition state. The highly positive and highly negative parts interact with the substrate to lower the energy of the transition state.
Answer:
Tendons connect the skeletal system to the muscular system by attaching muscle to bone. When muscle contracts, the tendon acts on the bone, causing movement. Joints, the point at which two or more bones connect, can be fixed, slightly movable, or freely movable.
94.20 g/3.16722 mL = 29.74 g/mL
The ratio of mass to volume is equal to the substance's density. Thus, 29.74 g/mL is the density of whatever substance it may be. Density does not change for incompressible matter like solid and some liquids. Although, it may be temperature dependent.