<h3>Answer:</h3>
<u>∅</u><u>C</u>. The amount of energy required to turn a mole of a liquid into a gas
<h3>Explaination:</h3>
The amount of energy required to convert a liquid to a gas is called the enthalpy of vaporization
┌─────── ∘°❁°∘ ───────┐
︎ CarryOnLearning ૮₍˶ᵔ ᵕ ᵔ˶₎ა
︎︎└─────── °∘❁∘° ───────┘
Answer:
0.26×10²³ molecules
Explanation:
Given data:
Volume of gas = 1.264 L
Temperature = 168°C
Pressure = 946.6 torr
Number of molecules of gas = ?
Solution:
Temperature = 168°C (168+273= 441 K)
Pressure = 946.6 torr (946.6/760 = 1.25 atm)
Now we will determine the number of moles.
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
n = PV/RT
n = 1.25 atm ×1.264 L / 0.0821 atm.L/ mol.K ×441 K
n = 1.58 /36.21 /mol
n = 0.044 mol
Now we will calculate the number of molecules by using Avogadro number.
1 mol = 6.022×10²³ molecules
0.044 mol × 6.022×10²³ molecules/ 1mol
0.26×10²³ molecules
To protect the patents of those they work . Patents are legal rights of ownership to something that you have made or created.
Please vote my answer branliest! Thanks .
2-bromo-3,4-dimethylpentane is combined with t-butoxide. The product of this reaction is 3,4 dimethyl - 1- pentene.
The reaction of 2-bromo-3,4-dimethylpentane is combined with t-butoxide forms 2 alkene in the elimination reaction due to steric hindrance. The least stable alkene 3,4 dimethyl - 1- pentene is easy to make. the t-butoxide is (CH₃)₃CO⁻. The reaction involves in this reaction is E2 elimination reaction. This reaction involves the one step reaction. The product will also form that is 3,4 dimethyl - 2 - pentene. so the reaction involve Elimination reaction and the product due to steric hindrance is 3,4 dimethyl - 1- pentene
Thus, 2-bromo-3,4-dimethylpentane is combined with t-butoxide. The product of this reaction is 3,4 dimethyl - 1- pentene.
To learn more about t-butoxide here
brainly.com/question/12303978
#SPJ4
This answer is 24 because 2.17 x 10 -8 is 24 so that would be your answer