Explanation:
It is known that for a body centered cubic unit cell there are 2 atoms per unit cell.
This means that volume occupied by 2 atoms is equal to volume of the unit cell.
So, according to the volume density
![5 \times 10^{26} atoms = 1 [tex]m^{3}](https://tex.z-dn.net/?f=5%20%5Ctimes%2010%5E%7B26%7D%20atoms%20%3D%201%20%5Btex%5Dm%5E%7B3%7D)
2 atoms = 
= 
Formula for volume of a cube is
. Therefore,
Volume of the cube = 
As lattice constant (a) = 
= 
Therefore, the value of lattice constant is
.
And, for bcc unit cell the value of radius is as follows.
r = 
Hence, effective radius of the atom is calculated as follows.
r = 
= 
= 
Hence, the value of effective radius of the atom is
.
Answer:
C. Al
Explanation:
2Al+ 3H2SO4(l)------> Al2(SO4)3+ 3H2
11.2
Step-by-step-explanation
Answer:
- <em>The maximum amount of copper allowed in 100 g of water is </em><u><em>0.00013 g</em></u>
Explanation:
To find the maximum amount of copper (in grams) allowed in 100 g of water use the maximum amount ratio (1.3 mg / kg) and set a proportion with the unknown amount of copper (x) and the amount of water (100 g):
First, convert 100 g of water to kg: 100 g × 1 kg / 1000 g = 0.1 kg.
Now, set the proportion:
- 1.3 mg Cu / 1 Kg H₂O = x / 0.1 kg H₂O
Solve for x:
- x = 0.1 kg H₂O × 1.3 mg Cu / 1 kg H₂O = 0.13 mg Cu
Convert mg to grams:
- 0.13 mg × 1 g / 1,000 mg = 0.00013 g
Answer: 0.00013 g of copper.