A beam of laser is directed at a reflecting surface put on the moon when the beam of laser is reflected a receiver on the each measure the time since the beam was sent till it was received. Laser is simply light so it has constant velocity in vacuum ~ air (c = 3 x 10^8 m/s)
to find the distance:
t : time measured between launching the beam and receiving it
d : distance
d = ct
Answer:
Speed; v = 17 m/s
Explanation:
We are given;
Radius; r = 110m
Angle; θ = 15°
Now, we know that in circular motion,
v² = rg•tanθ
Thus,
v = √(rg•tanθ)
Where,
v is velocity
r is radius
g is acceleration due to gravity
θ is the angle
Thus,
v = √(rg•tanθ) = √(110 x 9.8•tan15)
v = √(288.85)
v = 17 m/s
The first image below shows force F1 and the axes.
Answer:
3.62 kN
Explanation: The second figure below express the parallelogram method to calculate the u component of force F1.
The <u>Parallelogram</u> <u>Method</u> is a method to determine resultant force and is applied as described in the question above.
With the three components,
and
and angles, it can be used the <u>Law</u> <u>of</u> <u>Sines</u>, which states:

i.e., there is a relation of proportionality between an angle and its opposite side.
For the triangle below:



u = 3.62
The magnitude of the component acting along the u-axis is 3.62kN.
First one is a
I’ll answer one by one