consider the motion of the mass parallel to the incline
v₀ = initial velocity at the bottom of incline = 0 m/s
v = final velocity at the top of incline = 8.00 m/s
a = acceleration
d = displacement = L = length of incline = 15 m
using the equation
v² = v²₀ + 2 a d
8² = 0² + 2 a (15)
64 = 30 a
a = 64/30
a = 2.13 m/s²
F = applied force
from the force diagram, perpendicular to incline , force equation is given as
N = mg Cos30
μ = Coefficient of friction = 0.426
frictional force acting on the mass is given as
f = μ N
f = μ mg Cos30
parallel to incline , force equation is given as
F - f - mg Sin30 = ma
F - μ mg Cos30 - mg Sin30 = ma
inserting the values
F - (0.426 x 40 x 9.8) Cos30 - (40 x 9.8) Sin30 = 40 (2.13)
F = 425.82 N
Answer:
Explanation:
Given
mass of person
=68 kg
car dips about 1.2 cm
We know
F=kx
Where k=combined spring constant
mg=kx



Complete Question
A ball having mass 2 kg is connected by a string of length 2 m to a pivot point and held in place in a vertical position. A constant wind force of magnitude 13.2 N blows from left to right. Pivot Pivot F F (a) (b) H m m L L If the mass is released from the vertical position, what maximum height above its initial position will it attain? Assume that the string does not break in the process. The acceleration of gravity is 9.8 m/s 2 . Answer in units of m.What will be the equilibrium height of the mass?
Answer:


Explanation:
From the question we are told that
Mass of ball 
Length of string 
Wind force 
Generally the equation for
is mathematically given as




Max angle =
Generally the equation for max Height
is mathematically given as



Generally the equation for Equilibrium Height
is mathematically given as



1. 40-0=40
3. 40/5=8
8 ml/s
you find the range of acceleration(step one)
divide by the time(step two)
Answer:
2N
Explanation:
subtract rthe two forces to see which is greater
4-2=2