1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Wittaler [7]
3 years ago
6

Starting from rest, a basketball rolls from the top to the bottom of a hill, reaching a translational speed of 6.1 m/s. Ignore f

rictional losses. (a) What is the height of the hill? (b) Released from rest at the same height, a can of frozen juice rolls to the bottom of the same hill. What is the translational speed of the frozen juice can when it reaches the bottom?
Physics
1 answer:
tatiyna3 years ago
4 0

Answer:

a) h=3.16 m, b)  v_{cm }^ = 6.43 m / s

Explanation:

a) For this exercise we can use the conservation of mechanical energy

Starting point. Highest on the hill

           Em₀ = U = mg h

final point. Lowest point

           Em_{f} = K

Scientific energy has two parts, one of translation of center of mass (center of the sphere) and one of stationery, the sphere

           K = ½ m v_{cm }^{2} + ½ I_{cm} w²

angular and linear speed are related

           v = w r

           w = v / r

            K = ½ m v_{cm }^{2} + ½ I_{cm} v_{cm }^{2} / r²

            Em_{f} = ½ v_{cm }^{2} (m + I_{cm} / r2)

as there are no friction losses, mechanical energy is conserved

             Em₀ = Em_{f}

             mg h = ½ v_{cm }^{2} (m + I_{cm} / r²)         (1)

             h = ½ v_{cm }^{2} / g (1 + I_{cm} / mr²)

for the moment of inertia of a basketball we can approximate it to a spherical shell

             I_{cm} = ⅔ m r²

we substitute

            h = ½ v_{cm }^{2} / g (1 + ⅔ mr² / mr²)

            h = ½ v_{cm }^{2}/g    5/3

             h = 5/6 v_{cm }^{2} / g

           

let's calculate

           h = 5/6 6.1 2 / 9.8

           h = 3.16 m

b) this part of the exercise we solve the speed of equation 1

          v_{cm }^{2} = 2m gh / (1 + I_{cm} / r²)

in this case the object is a frozen juice container, which we can simulate a solid cylinder with moment of inertia

              I_{cm} = ½ m r²

we substitute

             v_{cm } = √ [2gh / (1 + ½)]

             v_{cm } = √(4/3 gh)

let's calculate

             v_{cm } = √ (4/3 9.8 3.16)

             v_{cm }^ = 6.43 m / s

You might be interested in
A 100 kg father and his 50 kg daughter stand on ice skates on a frozen pond. The daughter pushes on her father with a force of 5
Lana71 [14]

Answer:

Both feel same magnitude force.

Explanation:

Given that

Mass of father  = 100 kg

Mass of daughter = 50 kg

From the third law of Newtons :

   Every action have it reaction in opposite direction.It means that if any object apply a force on the other object then first object also feel force of same magnitude but in opposite direction.

It means that both father and her daughter will feel same magnitude of same but in opposite direction.

7 0
4 years ago
Read 2 more answers
The force of gravity is<br> _m/s2
larisa86 [58]

<em><u>The</u></em><em><u> </u></em><em><u>force</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>gravity</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>positive</u></em><em><u> </u></em><em><u>9</u></em><em><u>.</u></em><em><u>8m</u></em><em><u>/</u></em><em><u>s</u></em><em><u>^</u></em><em><u>2</u></em><em><u>.</u></em>

6 0
3 years ago
Question 7 (2 points)
Arlecino [84]

Answer:

Tire

Explanation:

3 0
3 years ago
A hot-air balloon of diameter 12 mm rises vertically at a constant speed of 14 m/s. A passenger accidentally drops his camera fr
fgiga [73]

Answer:

<em>The balloon is 66.62 m high</em>

Explanation:

<u>Combined Motion </u>

The problem has a combination of constant-speed motion and vertical launch. The hot-air balloon is rising at a constant speed of 14 m/s. When the camera is dropped, it initially has the same speed as the balloon (vo=14 m/s). The camera has an upward movement for some time until it runs out of speed. Then, it falls to the ground. The height of an object that was launched from an initial height yo and speed vo is

\displaystyle y=y_o+v_o\ t-\frac{g\ t^2}{2}

The values are

\displaystyle y_o=15\ m

\displaystyle v_o=14\ m/s

We must find the values of t such that the height of the camera is 0 (when it hits the ground)

\displaystyle y=0

\displaystyle y_o+v_o\ t-\frac{g\ t^2}{2}=0

Multiplying by 2

\displaystyle 2y_o+2v_ot-gt^2=0

Clearing the coefficient of t^2

\displaystyle t^2-\frac{2\ V_o}{g}\ t-\frac{2\ y_o}{g}=0

Plugging in the given values, we reach to a second-degree equation

\displaystyle t^2-2.857t-3.061=0

The equation has two roots, but we only keep the positive root

\displaystyle \boxed {t=3.69\ s}

Once we know the time of flight of the camera, we use it to know the height of the balloon. The balloon has a constant speed vr and it already was 15 m high, thus the new height is

\displaystyle Y_r=15+V_r.t

\displaystyle Y_r=15+14\times3.69

\displaystyle \boxed{Y_r=66.62\ m}

3 0
3 years ago
If the initial velocity of an object was -2 meters per second
Shalnov [3]
A :-) for this question , we should apply
a = v - u by t
Given - u = -2 m/s
v = -10 m/s
t = 16 sec
Solution -
a = v - u by t
a = -10 - -2 by 16
a = -12 by 16
( cut 12 and 16 because 2 x 6 = 12 and
2 x 8 = 16 )
( cut 6 and 8 because 2 x 3 = 6 and
2 x 4 = 8 )
a = 3 by 4
a = 0.75 m/s^2

.:. The acceleration is 0.75 m/s^2.
3 0
3 years ago
Other questions:
  • Which best explains why no current is induced? The wire needs to be coiled less tightly. The wire needs to be straight, not coil
    7·2 answers
  • A person hums into the top of a well and finds that standing waves are established at frequencies of 140, 196, and 252 Hz. The f
    8·1 answer
  • Fleas have remarkable jumping ability. a 0.60 mg flea, jumping straight up, would reach a height of 40 cm if there were no air r
    9·2 answers
  • Can you describe the clothes washing system inside a washing machine and explain how it is an embedded system ?
    15·2 answers
  • Which of the following nuclei would be most stable?
    14·2 answers
  • On planet Q the standard unit of volume is called guppi. Space travelers from Earth have determined that one liter = 38.2 guppie
    10·1 answer
  • Identify the mathematical proportion that relates electrostatic force and displacement for a pair of charged particles.
    6·1 answer
  • What is the net force acting on an object that is not accelerating in the horizontal axis?
    15·1 answer
  • coasting due west on your bicycle at 8 m/s, you encounter a sandy patch of road 7.2m across. when you leave the sandy patch your
    9·1 answer
  • What is the motional kinetic energy of a 25 kg object moving at a speed of 10 m/s?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!