Explanation:
Hydraulic Pressure-Control, On-Off Deluge Valve
FP-400Y-5DC
The BERMAD model 400Y-5DC is an elastomeric, hydraulic line pressure operated deluge valve, designed specifically for advanced fire protection systems and the latest industry standards. The 400Y-5DC is activated by a hydraulically operated relay valve, through which opening and closing of the valve can be controlled either with a remote hydraulic command or with a wet pilot line with closed fusible plugs. An integral pressure reducing pilot valve ensures a precise, stable, pre-set downstream water pressure. The optional valve position indicator can include a limit switch suitable for Fire & Gas monitoring systems. The 400Y-5DC is ideal for systems that combine a remote wet pilot line with a high pressure water supply.
Answer:
Average velocity (v) of an object is equal to its final velocity (v) plus initial velocity (u), divided by two.
v¯¯¯=(v+u)2
Where:
v¯¯¯ = average velocity
v = final velocity
u = initial velocity
The average velocity calculator solves for the average velocity using the same method as finding the average of any two numbers. The sum of the initial and final velocity is divided by 2 to find the average. The average velocity calculator uses the formula that shows the average velocity (v) equals the sum of the final velocity (v) and the initial velocity (u), divided by 2.
Explanation:
When the spring is extended by 44.5 cm - 34.0 cm = 10.5 cm = 0.105 m, it exerts a restoring force with magnitude R such that the net force on the mass is
∑ F = R - mg = 0
where mg = weight of the mass = (7.00 kg) g = 68.6 N.
It follows that R = 68.6 N, and by Hooke's law, the spring constant is k such that
k (0.105 m) = 68.6 N ⇒ k = (68.6 N) / (0.105 m) ≈ 653 N/m

Actually Welcome to the Concept of the Projectile Motion.
Since, here given that, vertical velocity= 50m/s
we know that u*sin(theta) = vertical velocity
so the time taken to reach the maximum height or the time of Ascent is equal to
T = Usin(theta) ÷ g, here g = 9.8 m/s^2
so we get as,
T = 50/9.8
T = 5.10 seconds
thus the time taken to reach max height is 5.10 seconds.
Answer:
I think is d and you or very pretty
Explanation: