Answer:
B. inverse plot, 0.51 kilograms/meter3
Explanation:
First of all, we note that the relationship between the altitude and the atmospheric density is an inverse relationship. In fact, an inverse relationship is a relationship between the x-variable and the y-variable of the form
Therefore, as the x increases, the y decreases, and as the x decreases, they increases. This is exactly what occurs with the altitude and the atmospheric density in this plot: as the altitude increases, the density decreases, and vice-versa.
Moreover, we can infer the value of the atmospheric density at an altitude of 1,291 km. This point is located between point A (2550 km) and point B(1000 km), so the density must have a value between 0.30 kg/m^3 and 0.54 kg/m^3, so the correct choice is
B. inverse plot, 0.51 kilograms/meter3
Infared = used by police
gamma = short wavelength
radio = largest wavelength
visible = only ones we can see
Answer:
<h2>
3,343.68kJ </h2>
Explanation:
Heat energy used up can be calculated using the formula:
H = mcΔt
m = mass oof the object (in kg) = 20kg
c = specific heat capacity of water = 4179.6J/kg°C
Δt change in temperature = 80-40 = 40°C
H= 20* 4179.6 * 40
H = 3,343,680Joules
H = 3,343.68kJ
Aspirate or inhale or respire or
Well according to Newton’s first law of motion, a body will remain in the state of rest or linear motion provided that an *external force* has been applied. So no, a force doesn’t need to keep a body to remain in linear motion, because F=ma, during uniform linear motion velocity is constant, hence acceleration is zero, so F=0