Answer:
DONORS: If the material for which it substitutes has more electrons than the original
ACCEPTORS: If the replacement material has fewer electrons than the original material
Fermi level: the point where the probability of finding the last electron is ½
Explanation:
When in a semiconductor material a small fraction of an element is replaced by another with different valences, an excess charge is created.
If the material for which it substitutes has more electrons than the original, there is an excess of electrons, these excess electrons are weakly bound in the material and their orbits are large, in an energy versus moment diagram their energy places them a little more below the conduction band, these materials are called DONORS.
If the replacement material has fewer electrons than the original material, one electron is missing to complete the bonds, so there is a movement of the other electrons, an easier way to analyze this movement of the (n-1) electrons is to suppose that The missing charge has a positive charge and to study its movement, this positive charge is called a hole, its binding energy is small so the orbit of the hole is large, in an energy diagram it is located a little above the band of valence, these are called ACCEPTORS
The Fermi level is defined as the point where the probability of finding the last electron is ½, when the temperature is changed the density of states of the bands changes, therefore the location point moves, but its [probability remains ½
Answer:
Density is equal to m/v where m is mass and v is volume. Even though the blocks have the same mass, they may have different volumes and therefore they will not have the same density.
Explanation:
<span>82.0 kg
I am going to assume that there is a typo for the number of joules of energy. Doing a google search for this exact question showed this question multiple times with a value of 4942 joules which makes sense given how close the "o" key is to the "9" key. Because of this, I will assume that the correct value for the number of joules is 4942. With that in mind, here's the solution.
The gravitational potential energy is expressed as the mass multiplied by the height, multiplied by the local gravitational acceleration. So:
E = MHA
Solving for M, the substituting the known values and calculating gives:
E = MHA
E/(HA) = M
4942/(6.15*9.8) = M
4942/60.27 = M
81.99767712 = M
Rounding to 3 significant figures gives 82.0 kg</span>